## Data Acquisition Modules

# Manual ADAM 8000

## **CPU 821x**

**Revision 1.1** 



The information in this manual is supplied without warranties. Information is subject to change without notice.

© Copyright 2002 Advantech Co., Ltd. No. 1 Alley 20, Lane 2, Rueiguang Rd., Neihu District, Taipei, Taiwan 114, R.O.C.

EMail: support@advantech.com http://www.advantech.com

All rights reserved

**Disclaimer of liability** The contents of this manual was carefully examined to ensure that it conforms with the described hardware and software. However, discrepancies can not be avoided. The specifications in this manual are examined regularly and corrections will be included in subsequent editions.

We gratefully accept suggestions for improvement.

TrademarksADAM® is a registered trademark of Advantech Co., Ltd.STEP7® is a registered trademark of Siemens AG.Any other trademarks referred to in the text are the trademarks of the respective owner and we acknowledge their registration.

### About this manual

This manual describes the operation of the CPU 821x in the System ADAM 82xx from Advantech. The text provides details on the hardware, the programming and the functions integrated into the unit as well as Profibus and Ethernet applications.

#### Outline Chapter 1: Principles

This introduction includes recommendations on the handling of the module as well as information about applications and implementation for CPU modules.

You may also read details about the mode of operation of the CPU 821x.

#### Chapter 2: Hardware description

Different versions of the CPU are available (CPU 821x, CPU 821xDP, CPU 821xNET). This chapter describes these versions in detail. In addition to the hardware description the chapter also includes a summary of the integrated circuits.

#### Chapter 3: Deployment of the CPU 821x

This chapter describes the deployment of the CPU section together with the peripheral modules of the System 8xxx that are installed on the same bus rail.

#### Chapter 4: Deployment of the CPU 821xNET

Applications, project design, functional description and programming of the CPU 821xNET.

#### Chapter 5: Deployment of the CPU 821xDPM

Content of this chapter is the deployment and project engineering of the CPU 821xDPM with integrated Profibus-DP master. Besides the description of the DP master operating modes you will also find information about the start-up behaviour and the commissioning.

#### Chapter 6: Deployment of the CPU 821xDP

Topic of this chapter is the CPU 821xDP (intelligent slave). You will find the description of the deployment, configuration and parameter definition for the CPU 821xDP under Profibus.

#### Chapter 7: Integrated SFCs

Here you find the description of the integrated ADAM-specific SFCs, like e.g. the SFCs for the CP communication.

#### Chapter 8: Command list

This chapter lists all available commands of the CPU in alphabetical order.

## Contents

| User considerations                                               | 1    |
|-------------------------------------------------------------------|------|
| Safety information                                                | 2    |
| Chapter 1 Principles                                              | 1-1  |
| Safety information for users                                      | 1-2  |
| Hints for the deployment of the MPI interface                     | 1-3  |
| Hints for the deployment of the Green Cable                       | 1-4  |
| Overview System 82xx                                              | 1-5  |
| General description of the System 82xx                            | 1-6  |
| Overview CPU 821x                                                 | 1-7  |
| Hints for project engineering                                     | 1-8  |
| Application fields                                                | 1-11 |
| Features                                                          | 1-12 |
| Operating modes of a CPU                                          | 1-13 |
| CPU 821x programs                                                 | 1-14 |
| CPU 821x operands                                                 | 1-14 |
| Chapter 2 Hardware description                                    | 2-1  |
| System overview                                                   | 2-2  |
| Structure                                                         | 2-7  |
| Components                                                        | 2-9  |
| Block diagram                                                     | 2-14 |
| Technical data                                                    | 2-15 |
| Chapter 3 Deployment of the CPU 821x                              | 3-1  |
| Start-up behavior                                                 | 3-2  |
| Address allocation                                                | 3-3  |
| Preparations required for configuration                           | 3-5  |
| Configuration of directly installed System 82xx modules           | 3-6  |
| Configuration of the CPU parameters                               | 3-8  |
| Project transfer                                                  | 3-10 |
| Operating modes                                                   | 3-13 |
| Overall Reset                                                     | 3-14 |
| Assembly                                                          | 3-16 |
| Recalling version and performance information                     | 3-17 |
| Using test functions for the control and monitoring of variables. | 3-18 |
| Chapter 4 Deployment of the CPU 821xNET                           | 4-1  |
| Principles                                                        | 4-2  |
| Network planning                                                  | 4-7  |
| Standards and norms                                               | 4-9  |
| Ethernet and IP addresses                                         | 4-10 |
| Configuration of the CPU 821xNET                                  | 4-12 |
| Configuration examples                                            | 4-17 |
| Start-up behavior                                                 | 4-28 |
| System properties of the CPU 821xNET                              | 4-29 |
| Communication links to foreign systems                            | 4-31 |
| Test program for TCP/IP connections                               | 4-34 |

| Chapter 5    | Deployment of        | the CPU 821xDPM                    | 5-1          |
|--------------|----------------------|------------------------------------|--------------|
| Principles.  |                      |                                    | 5-2          |
| Project eng  | ineering CPU with    | n integrated Profibus-DP master    | 5-5          |
| Project trar | sfer                 |                                    | 5-8          |
| DP master    | operating modes.     |                                    | 5-12         |
| Commissio    | ning and Start-up    | behavior                           | 5-13         |
| Chapter 6    | Deployment of        | the CPU 821xDP                     | 6-1          |
| Principles.  |                      |                                    | 6-2          |
| CPU 821x[    | OP configuration     |                                    | 6-7          |
| DP slave p   | arameters            |                                    | 6-12         |
| Diagnostic   | functions            |                                    | 6-15         |
| Internal sta | tus messages to (    | CPU                                | 6-18         |
| Profibus In  | stallation guideline | 9S                                 | 6-20         |
| Commissio    | ning                 |                                    | 6-25         |
| Example      |                      |                                    | 6-27         |
| Chapter 7    | Integrated OBs,      | SFBs and SFCs                      | 7-1          |
| Integrated   | OBs and SFBs         |                                    | 7-3          |
| Integrated   | standard SFCs        |                                    | 7-4          |
| ADAM spe     | cific SFCs           |                                    |              |
| Include AD   | AM library           |                                    | 7-7          |
| SFC 220 N    | MC_CR_F              |                                    | 7-8          |
| SFC 221 N    | MC_RD_F              |                                    |              |
| SFC 222 N    | MC_WR_F              |                                    | 7-11         |
| SFC 223 P    | WM                   |                                    |              |
| SFC 224 H    | SC                   |                                    |              |
| SFC 225 H    | F_PWM                |                                    |              |
| SFC 227 -    | TD_PRM               |                                    |              |
| SFC 228 -    | RW_KACHEL            |                                    |              |
| Page frame   | e communication -    | Parameter                          |              |
| Page frame   | e communication -    | Parameter transfer                 |              |
| Page frame   | e communication -    | Source res. destination definition |              |
| Page frame   | e communication -    |                                    |              |
| Page frame   | e communication -    | Parameterization error PAFE        |              |
| SFC 230 -    |                      |                                    |              |
| SFC 231 -    |                      |                                    | ، د- /       |
| SFC 232 -    |                      |                                    | 00-1         |
| SFC 233 -    |                      |                                    |              |
| SFC 234 -    | RESET<br>SVNCHDON    |                                    | 7-40         |
| SEC 236      |                      |                                    |              |
| SEC 237      |                      |                                    | 7 /2         |
| SEC 232      |                      |                                    |              |
| Chanter 9    | Instruction liet     |                                    | ++- /<br>2_1 |
| Alphabetic   | al instruction list  |                                    |              |
| Ahhreviatic  | ns                   |                                    | 2-0<br>۶_۶   |
| Registers    |                      |                                    |              |
| Addressing   | examples             |                                    | ר ס<br>א_א   |
| /            | o.unpico             |                                    |              |

|   | Math instructions                                  | . 8-11     |
|---|----------------------------------------------------|------------|
|   | Block instructions                                 | . 8-13     |
|   | Program display and null instruction instructions  | . 8-14     |
|   | Edge-triggered instructions                        | . 8-14     |
|   | Load instructions                                  | . 8-15     |
|   | Shift instructions                                 | . 8-18     |
|   | Setting/resetting bit addresses                    | . 8-19     |
|   | Jump instructions                                  | . 8-21     |
|   | Transfer instructions                              | . 8-22     |
|   | Data type conversion instructions                  | . 8-25     |
|   | Comparison instructions                            | . 8-26     |
|   | Bit logic instructions (Bit)                       | . 8-27     |
|   | Word logic instructions with the contents of ACCU1 | . 8-33     |
|   | Timer instructions                                 | . 8-33     |
|   | Counter instructions                               | . 8-35     |
|   | ADAM specific diagnostic entries                   | . 8-36     |
| ŀ | Appendix                                           | <b>A-1</b> |
|   | Index                                              | A-1        |
|   |                                                    |            |

## **User considerations**

| Objective and contents   | This manual describes the CPU 821x as well as all the versions of the product. It contains a description of the construction, project implementation and the application of the product.<br>The CPU 821x is compatible with all System ADAM 82xx components of Advantech. |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target audience          | The manual is targeted at users who have a background in automation technology and PLC-programming.                                                                                                                                                                       |
| Structure of the manual  | This manual consists of 8 chapters. Every chapter provides the description of one specific topic.                                                                                                                                                                         |
| Guide to the<br>document | <ul> <li>This manual provides the following guides:</li> <li>An overall table of contents at the beginning of the manual</li> <li>An overview of the topics for every chapter</li> <li>An index at the end of the manual.</li> </ul>                                      |
| Availability             | <ul> <li>The manual is available in:</li> <li>printed form on paper</li> <li>in electronic form as PDF-file (Adobe Acrobat Reader)</li> </ul>                                                                                                                             |
| lcons<br>Headings        | Important passages in the text are highlighted by following icons and headings:                                                                                                                                                                                           |
|                          | <b>Danger!</b><br>Immediate or likely danger.<br>Personal injury is possible.                                                                                                                                                                                             |
| $\underline{\wedge}$     | Attention!<br>Damages to property is likely if these warnings are not heeded.                                                                                                                                                                                             |
|                          | Note!                                                                                                                                                                                                                                                                     |

Supplementary information and useful tips.

## Safety information

Application specifications

The CPU 821x is constructed and manufactured for

- all System ADAM 82xx components
- communication and process control
- general control and automation tasks
- industrial applications
- operation within the environmental conditions specified in the technical data
- installation into a cubicle



#### Danger!

This device is not certified for applications in

• explosive environments (EX-zone)

#### Documentation

The manual must be available to all personnel in the

- project design department
- installation department
- commissioning
- operation



## The following conditions must be met before using or commissioning the components described in this manual:

- Modification to the process control system should only be carried out when the system has been disconnected from power!
- Installation and modifications only by properly trained personnel
- The national rules and regulations of the respective country must be satisfied (installation, safety, EMC ...)

Disposal

National rules and regulations apply to the disposal of the unit!

## Appendix

## A Index

| Δ                   |           | Requirements            | 3-5        |
|---------------------|-----------|-------------------------|------------|
| A                   |           | Project transfer        | 3-7, 5-8   |
| Akku                | 3-2       | Test functions          | 3-18       |
| A-NR                | 7-23      | CPU 821xDP              | 6-1        |
| ANZW                | 7-23      | Cabling                 | 6-21       |
| ANZW Indicator word | 7-28      | Commissioning           | 6-25       |
| States              | 7-34      | Construction            | 2-4        |
| Application fields  | 1-11      | Diagnostics             | 6-14, 6-15 |
| Assembly            | 3-16      | Device related          | 6-17       |
| P                   |           | Standard                | 6-16       |
|                     |           | start                   | 6-17       |
| BLGR                | 7-24      | Example                 | 6-27       |
| Block size 4-16, 7  | -24, 7-41 | Initialization phase    | 6-26       |
| С                   |           | Installation guidelines | 6-20       |
| Componente          | 2.0       | LED's                   | 2-12       |
|                     | 2-9       | MPI interface           | 2-10       |
| Core cross-section  | 1-6       | Network examples        | 6-23       |
| CPU 821x            |           | Parameter data          | 6-13       |
| Operands            | 1-14      | Profibus interface      | 2-12       |
| Project engineering | 1-8       | Project engineering     | 6-7        |
| Project transfer    | 4-26      | Profibus section        | 6-10       |
| Properties          | 2-6       | Status messages         | 6-18       |
| l echnical data     | 2-15      | CPU 821xDPM             | 5-1        |
| CPU 821xDP          |           | Commissioning           | 5-13       |
| Technical data      | 2-18      | Construction            | 2-5        |
| CPU 821xDPM         |           | LED's                   | 2-13       |
| Technical Data      | 2-17      | Operating modes         | 5-12       |
| CPU 821xNET         |           | Profibus interface      | 2-13       |
| Applications        | 4-6       | Project Engineering     | 5-5        |
| PLC programming     | 4-15      | Start-up behavior       | 5-13       |
| Technical data      | 2-16      | Usage of MMC            | 5-10       |
| CPU 821x            |           | CPU 821xNET             |            |
| Assembly            | 3-16      | Address                 |            |
| Block diagram       | 2-14      | Broadcast-              | 4-10       |
| Construction        | 2-9       | Ethernet/IP-            | 4-10       |
| LED's               | 2-9       | Initial address         | 4-11       |
| Operating modes     | 3-13      | Communication           | 4-3        |
| Overall reset       | 3-14      | Construction            | 2-3        |
| Parameters          | 3-9       | Ethernet interface      | 2-11       |
| Power supply        | 2-9       | LED's                   | 2-11       |
| Project engineering | 3-5       | Links                   | 4-31       |
| Include GSD file    | 3-5       | Network planning        | 4-7        |

| NETZEIN (Power on)              | 4-16       |
|---------------------------------|------------|
| ORG format                      | 4-31       |
| PLC header                      | 4-32       |
| Project engineering             | 4-12       |
| Example                         | 4-17       |
| Data transfer                   | 4-22       |
| Outline                         | 4-17       |
| Start-up behavior               | 4-28       |
| Synchronization                 | 4-16       |
| System properties               | 4-29       |
| TRADA                           | 4-33       |
| Wildcard length                 | 4-33       |
| Ū.                              |            |
| D                               |            |
| Data consistency                |            |
| Profibus-DP                     | 5-3, 6-5   |
| De-insulation length            | 6-22       |
| Diagnostic buffer               | 8-36       |
| DP cycle                        | 6-4        |
| F                               |            |
|                                 | 4.0        |
| Environmental conditions        | 1-6        |
| Error                           |            |
| CPU 821xDP                      |            |
| Diagnostics 6                   | 5-14, 6-15 |
| Indicator word                  | 7-28       |
|                                 | 7-35       |
| Ethernet                        | 4.40       |
| Address                         | 4-10       |
|                                 | 4-9        |
| Event-ID                        | 8-30       |
| F                               |            |
| Features                        | 1-12       |
| function selector RN/ST/N       | /R 2-9     |
|                                 |            |
| G                               |            |
| Green Cable<br>Hints            | 1-4        |
| GSD file1-8, 3-5, 5-4, 5-6<br>8 | 8, 6-6, 6- |
| Н                               |            |
| H1                              | 4-4        |
| Hardware configurator           | <br>1_8    |
| Hardware description            | 1-0<br>2_1 |
| าสานพลาย นยรงกฎแบก<br>มนุษ      | 2-1<br>4 0 |
|                                 | 4-2        |

| Ι                      |          |
|------------------------|----------|
| IND                    | 7-23     |
| Industrial Ethernet    | 4-4      |
| Instruction list       | 8-1      |
| Integrated blocks      | 7-1      |
| OBs                    | 7-3      |
| SFBs                   | 7-3      |
| SFBs (Standard)        | 7-4      |
| SFCs (ADAM specific)   | 7-6      |
| IP address             | 4-10     |
| L                      |          |
| Library include        | 7-7      |
| М                      |          |
| min_slave_interval     | 6-5      |
| MMC                    | 5-10     |
| Read data              | 5-14     |
| MPI                    | 3-10     |
| configuration          | 3-11     |
| Hints                  | 1-3      |
| Interface              | 2-10     |
| Transfer via           | 3-10     |
| Ν                      |          |
| Network                | 4-2      |
| 0                      |          |
| operating modes        | 2-9      |
| Optical waveguide      | 5-4, 6-6 |
| ORG Organization forma | t 4-31   |
| Overview System 82xx   | 1-5      |
| Р                      |          |
| PAFE                   | 7-24     |
| Peripheral module      |          |
| Addressing             | 3-3      |
| PLC header             | 4-32     |
| Principles             | 1-1      |
| Profibus-DP            | 5-2      |
| Addressing             | 5-4, 6-6 |
| Communication protocol | 5-3      |
| Connectors             | 6-22     |
| Data consistency       | 5-3, 6-5 |
| Data transfer          | 6-4      |
| Master                 | 5-2      |
| Slave                  | 5-2      |

| Data communication 5-3           | 3, 6-3<br>5-3 |
|----------------------------------|---------------|
|                                  | 00            |
| Q                                |               |
| QANF/ZANF                        | 7-24          |
| R                                |               |
| Registers                        | 8-7           |
| S                                |               |
| SFCs                             |               |
| Assignment table CPU - SFC       | 7-6           |
| HF PWM (SFC 225)                 | 7-16          |
| HSC (SFC 224)                    | 7-14          |
| Include library                  | 7-7           |
| MMC access (SFC 220, 221         | , 222         |
|                                  | 7-8           |
| Page frame access (SFC 228 20    | ) 7-          |
| Page frame communication         | 7-22          |
| CONTROL (SFC 233)                | 7-39          |
| CTRL1 (SFC 238)                  | 7-44          |
| FETCH (SFC 232)                  | 7-38          |
| Indicator word ANZW              | 7-28          |
| Length word                      | 7-32          |
| Parameter                        | 7-22          |
| Parameter transfer               | 7-25          |
| Parameterization error PAF<br>35 | E 7-          |
| RECEIVE (SFC 231)                | 7-37          |
| RECEIVE_ALL (SFC 237)            | 7-43          |
| RESET (SFC 234)                  | 7-40          |

| SEND (SFC 230)<br>SEND_ALL (SFC 236)                                                                                     | 7-36<br>7-42                                            |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Source/Destination details                                                                                               | 7-26                                                    |
| SYNCHRON (SFC 235)                                                                                                       | 7-41                                                    |
| TD200 access (SEC 227)                                                                                                   | 7-12<br>7-18                                            |
| SSNR                                                                                                                     | 7_23                                                    |
| Star topology                                                                                                            | 2-11                                                    |
| Start-up behavior                                                                                                        | 3-2                                                     |
| Status report                                                                                                            | 7-28                                                    |
| Status word                                                                                                              | 8-8                                                     |
| Synchronization                                                                                                          | 00                                                      |
| Interfaces                                                                                                               | 4-24                                                    |
| System overview                                                                                                          | 2-2                                                     |
| 5                                                                                                                        |                                                         |
| Т                                                                                                                        |                                                         |
| T<br>TCP/IP                                                                                                              | 4-5                                                     |
| T<br>TCP/IP<br>Test program                                                                                              | 4-5<br>4-34                                             |
| <i>T</i><br>TCP/IP<br>Test program<br>Termination                                                                        | 4-5<br>4-34<br>6-22                                     |
| <i>T</i><br>TCP/IP<br>Test program<br>Termination<br>TRADA                                                               | 4-5<br>4-34<br>6-22<br>4-33                             |
| <i>T</i><br>TCP/IP<br>Test program<br>Termination<br>TRADA<br>Twisted-pair                                               | 4-5<br>4-34<br>6-22<br>4-33<br>4-2                      |
| <i>T</i><br>TCP/IP<br>Test program<br>Termination<br>TRADA<br>Twisted-pair<br>Restrictions                               | 4-5<br>4-34<br>6-22<br>4-33<br>4-2<br>4-8               |
| T<br>TCP/IP<br>Test program<br>Termination<br>TRADA<br>Twisted-pair<br>Restrictions                                      | 4-5<br>4-34<br>6-22<br>4-33<br>4-2<br>4-8               |
| T<br>TCP/IP<br>Test program<br>Termination<br>TRADA<br>Twisted-pair<br>Restrictions<br>V<br>V-bus cycle                  | 4-5<br>4-34<br>6-22<br>4-33<br>4-2<br>4-8<br>6-4        |
| T<br>TCP/IP<br>Test program<br>Termination<br>TRADA<br>Twisted-pair<br>Restrictions<br>V<br>V-bus cycle<br>Versions      | 4-5<br>4-34<br>6-22<br>4-33<br>4-2<br>4-8<br>6-4<br>1-7 |
| T<br>TCP/IP<br>Test program<br>Termination<br>TRADA<br>Twisted-pair<br>Restrictions<br>V<br>V-bus cycle<br>Versions<br>W | 4-5<br>4-34<br>6-22<br>4-33<br>4-2<br>4-8<br>6-4<br>1-7 |

## Chapter 1 Principles

Outline

This introduction contains references on the handling and information about application areas and usage of the CPU modules.

It also provides certain suggestions on the approach when programming the module and the CPU specifications that are important in this respect.

Below follows a description of:

- Safety information for users
- Construction and operation of the CPU 821x
- Programming principles

| Contents | Торіс                                         | Page |
|----------|-----------------------------------------------|------|
|          | Chapter 1 Principles                          | 1-1  |
|          | Safety information for users                  | 1-2  |
|          | Hints for the deployment of the MPI interface | 1-3  |
|          | Hints for the deployment of the Green Cable   | 1-4  |
|          | Overview System 82xx                          | 1-5  |
|          | General description of the System 82xx        | 1-6  |
|          | Overview CPU 821x                             | 1-7  |
|          | Hints for project engineering                 | 1-8  |
|          | Application fields                            |      |
|          | Features                                      |      |
|          | Operating modes of a CPU                      | 1-13 |
|          | CPU 821x programs                             |      |
|          | CPU 821x operands                             | 1-14 |

### Safety information for users

Handling of electrostatically sensitive modules ADAM modules make use of highly integrated components in MOStechnology. These components are extremely sensitive to over-voltages that may occur during electrostatic discharges.

The following symbol is attached to modules that can be destroyed by electrostatic discharges:



The symbol is located on the module, the module rack or on packing material and it indicates the presence of electrostatically sensitive equipment.

It is possible that electrostatically sensitive equipment is destroyed by energies and voltages that are far less than the human threshold of perception. These voltages may occur where persons do not discharge themselves before handling electrostatically sensitive modules and they may damage components thereby causing the module to become inoperable or unusable. Modules that have been damaged by electrostatic discharge are usually not detected immediately. The respective failure may become apparent after a period of operation.

Components damaged by electrostatic discharges can fail after a temperature change, mechanical shock or changes in the electrical load.

Only the consistent implementation of protective devices and meticulous attention to the applicable rules and regulations for handling the respective equipment is able to prevent failures of electrostatically sensitive modules.

**Shipping of** Please ship the modules exclusively in the original packing material.

modules

Measurements and alterations on electrostatically sensitive modules When you are conducting measurements on electrostatically sensitive modules you should take the following precautions:

- Floating instruments must be discharged before use.
- Instruments must be grounded.

You should only use soldering irons with grounded tips when you are making modifications on electrostatically sensitive modules.



#### Attention!

Personnel and instruments should be grounded when working on electrostatically sensitive modules.

## Hints for the deployment of the MPI interface

What is MP<sup>2</sup>I?

The MP<sup>2</sup>I jack combines 2 interfaces in 1:

- MP interface
- RS232 interface

Please regard that the RS232 functionality is only available by using the Green Cable from Advantech.

Deployment as<br/>MP interfaceThe MP interface provides the data transfer between CPUs and PCs. In a<br/>bus communication you may transfer programs and data between the<br/>CPUs interconnected via MPI.

Connecting a common MPI cable, the MPI jack supports the full MPI functionality.



#### Important notes for the deployment of MPI cables!

Deploying MPI cables at the ADAM CPUs from Advantech, you have to make sure that Pin 1 is not connected. This may cause transfer problems and in some cases damage the CPU!

Especially Profibus cables from Siemens, like e.g. the 6XV1 830-1CH30, must not be deployed at MP<sup>2</sup>I jack.

For damages caused by nonobservance of these notes and at improper deployment, ADAM does not take liability!

Deployment as RS232 interface only via "Green Cable" For the serial data transfer from your PC, you normally need a MPI transducer. Fortunately you may also use the "Green Cable" from Advantech You can order this under the order no. ADAM-8950-0KB00.



transfer via the MP<sup>2</sup>I jack exclusively for ADAM 8xxx CPUs. Please regard the hints for the deployment of the "Green Cable" on the following page.

The "Green Cable" supports a serial point-to-point connection for data

## Hints for the deployment of the Green Cable

What is the Green Cable?



The Green Cable is a green connection cable, manufactured exclusively for the deployment at ADAM System components.

The Green Cable is a programming and download cable for ADM CPUs 8xxx and ADAM fieldbus masters. The Green Cable from Advantech is available under the order no. ADAM-8950-0KB00.

The Green Cable allows you to:

- transfer projects serial
- Avoiding high hardware needs (MPI transducer, etc.) you may realize a serial point-to-point connection via the Green Cable and the MP<sup>2</sup>I jack. This allows you to connect components to your ADAM CPU that are able to communicate serial via an MPI adapter like e.g. a visualization system.
- execute firmware updates of the CPUs and fieldbus masters Via the Green Cable and an upload application you may update the firmware of all recent CPUs 8xxx and certain fieldbus masters (see Note).



#### Important notes for the deployment of the Green Cable

Nonobservance of the following notes may cause damages on system components.

For damages caused by nonobservance of the following notes and at improper deployment, Advantech does not take liability!



#### Note to the application area

The Green Cable may exclusively deployed <u>directly</u> at the concerning jacks of the ADAM components (in between plugs are not permitted).

At this time, the following components support the Green Cable:

CPUs 8xxx and the fieldbus masters ADAM 8208-1xx01 from Advantech.



#### Note to the lengthening

The lengthening of the Green Cable with another Green Cable res. The combination with further MPI cables is not permitted and causes damages of the connected components!

The Green Cable may only be lengthened with a 1:1 cable (all 9 Pins are connected 1:1).

## **Overview System 82xx**

**The System 82xx** The System 82xx is a modular automation system for low and middle range of performance that you may use either centralized or decentralized. The single modules are directly clipped to a 35mm DIN rail and are connected together with the help of special bus clips.

The following picture shows the range of performance of the System82xx:



OverviewThe current manual describes the PLC-CPU family CPU 821x compatible toManualsSTEP<sup>®</sup>7 by Siemens.

The peripheral modules, PCs and decentralized peripheral equipment are to find in the manual HB97 "System82xx". This manual also contains hints for installation and commissioning of the System82xx.

### General description of the System 82xx

Structure / Dimensions

- Norm profile head rail 35mm
- Peripheral modules with labeling strip
- Measurements basic module: Single width: (HxWxD) in mm: 76x25.4x76; in inches: 3x1x3 Double width: (HxWxD) in mm: 76x50.8x76; in inches: 3x2x3

**Installation** Please note, that you have to plug in the CPU only at plug-in location 1 resp. 1 and 2 (if double width).



CPU if double width CPU single width

- peripheral modules
- I leading bars

Operating security
Plug in via CageClamps at the front-facing connector, core cross-section 0.08...2.5mm<sup>2</sup> resp. 1.5 mm<sup>2</sup> (18pin plug)
Total isolation of the cables during module changes
Potential separation of all modules to the backplane bus
EMC-proof ESD/Burst acc. EN61000-4-2/EN61000-4-4 to Level 3: 8kV/2.5kV
Shock resistance acc. IEC 60068-2-6 / IEC 60068-2-27 (1G/12G)

Environmental conditions

- Operating temperature: 0... +55°C
- Storage temperature: -40... +85°C
- Relative humidity: 95% without condensation
- fan-less operation

## **Overview CPU 821x**

Products The ADAM CPU 821x is available in four different versions also differing in view:

- CPU 821x PLC-CPU
- CPU 821xNET PLC-CPU with Ethernet interface
- CPU 821xDPM PLC-CPU with Profibus-DP master
- **CPU 821xDP** PLC-CPU with Profibus-DP slave

**Performance specification** Every CPU 821x is available in 3 CPU performance specifications: 214, 215 and 216. There is no visual difference between these units. The performance of the CPU 821x increases along with an increase of the number.

| Data                            | CPU 8214                                         | CPU 8215            | CPU 8216        |
|---------------------------------|--------------------------------------------------|---------------------|-----------------|
| RAM                             | 40kByte                                          | 80kByte             | 192kByte        |
| Load memory                     | 32kByte                                          | 64kByte             | 128kByte        |
| Cycle time, bit/word operations |                                                  | 0.18µs / 0.78µs     |                 |
| Bit memory/marker               |                                                  | 2048Bit (M0.0M255.7 | ")              |
| Timer                           |                                                  | 128 (T0T127)        |                 |
| Counter                         |                                                  | 256 (Z0Z255)        |                 |
| Number of blocks FB / FC / DB   |                                                  | 1024 / 1024 / 2047  |                 |
| Total addressing space          | 1024 / 1024 with 128Byte process image (PA) each |                     |                 |
| inputs / outputs                |                                                  |                     |                 |
| PA Inputs                       | 1024Bit (E0.0E127.7)                             |                     |                 |
| PA Outputs                      |                                                  | 1024Bit (A0.0A127.7 | )               |
| Order data                      |                                                  |                     |                 |
| CPU 21x                         | ADAM-8214-1BA01                                  | ADAM-8215-1BA01     | ADAM-8216-1BA01 |
| CPU 21xNET                      | ADAM-8214-2BT01                                  | ADAM-8215-2BT01     | ADAM-8216-2BT01 |
| CPU 21xDPM                      | ADAM-8214-2BM01                                  | ADAM-8215-2BM01     | ADAM-8216-2BM01 |
| CPU 21xDP                       | ADAM-8214-2BP01                                  | ADAM-8215-2BP01     | ADAM-8216-2BP01 |



General information

#### Note!

If not especially specified, the information in this manual refers to all the CPUs of the ADAM CPU 821x family!

The instruction set of the CPU 821x is compatible with STEP<sup>®</sup>7 of Siemens and is being configured by means of the Siemens STEP<sup>®</sup>7 manager. A large function library is included with the CPU.

The CPU employs a Multi Media Card (MMC) as external storage medium. The MMC is available from Advantech.

The project engineering of the Ethernet components takes place by means of the ADAM project configuration tool WinNCS. The data may be transferred into the CPU via MPI.

The CPU 821x has an integrated power supply that requires DC 24V via the front panel. It is protected against reverse polarity and short circuits.

## Hints for project engineering

| Outline For the project engineering of the CPU 821x and the other Syste modules connected to the same bus, you use the hardware conf from Siemens. |                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                    | To address the directly plugged peripheral modules, you have to assign a special address in the CPU to every one.                                                                                                                                                                                                                      |  |
|                                                                                                                                                    | The address allocation and the parameterization of the modules takes place in the STEP <sup>®</sup> 7 manager from Siemens in form of a virtual Profibus system. For the Profibus interface is standardized software sided, the functionality is guaranteed by including a GSD-file into the STEP <sup>®</sup> 7 manager from Siemens. |  |
|                                                                                                                                                    | Transfer your project into the CPU via the MPI interface.                                                                                                                                                                                                                                                                              |  |
| Preconditions                                                                                                                                      | For the project engineering of your CPU 821x the following requirements have to be fulfilled:                                                                                                                                                                                                                                          |  |
|                                                                                                                                                    | <ul> <li>STEP<sup>®</sup>7 manager from Siemens is installed at your PC resp. PU.</li> </ul>                                                                                                                                                                                                                                           |  |
|                                                                                                                                                    | <ul> <li>The GSD-file for the System 82xx is included to the hardware<br/>configurator</li> </ul>                                                                                                                                                                                                                                      |  |
|                                                                                                                                                    | <ul> <li>serial connection to the CPU (e.g. via "Green Cable")</li> </ul>                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                    | Note!                                                                                                                                                                                                                                                                                                                                  |  |
| 1                                                                                                                                                  | The configuration of the CPU requires a thorough knowledge of the Siemens STEP <sup>®</sup> 7 manager and the hardware configurator!                                                                                                                                                                                                   |  |
| Compatibility to<br>STEP <sup>®</sup> 7 manager<br>from Siemens via                                                                                | The CPU 821x is configurable via the STEP7 <sup>®</sup> manager from Siemens.<br>This means the programming and parameterization of a System ADAM<br>82xx and the parameterization and project engineering under Profibus-DP.                                                                                                          |  |
| GSD-file                                                                                                                                           | The project engineering of a CPU 821x takes place via the STEP <sup>®</sup> 7 manager from Siemens in form of a virtual Profibus system with the CPU 315-2DP as basic.                                                                                                                                                                 |  |
|                                                                                                                                                    | Due to the standardized Profibus interface ADAM is able to support the complete functionality of the System 82xx family in the STEP <sup>®</sup> 7 manager from Siemens by including a GSD-file.                                                                                                                                       |  |
|                                                                                                                                                    | To be compatible with the STEP®7 configuration tool from Siemens, the following steps have to take place:                                                                                                                                                                                                                              |  |
|                                                                                                                                                    | <ul> <li>Project the Profibus-DP master system with CPU 315-2DP<br/>(6ES7 315-2AF01).</li> </ul>                                                                                                                                                                                                                                       |  |
|                                                                                                                                                    | Add Profibus slave with address 1.                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                    | <ul> <li>Include the CPU 821x at slot 0 of the slave system.</li> </ul>                                                                                                                                                                                                                                                                |  |
| L                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |  |

Project engineering CPU 821x with central periphery The following steps are necessary to project a CPU 821x in the hardware configurator from Siemens:

- Start the hardware configurator from Siemens
- Load the delivered ADAM GSD-file from Advantech
- Create a Profibus-DP master system with the CPU 315-2DP
- Include the slave system "ADAM\_DP8000" from the hardware catalog in your master system. You find this slave system in the hardware catalog under *Profibus-DP* > Additional field devices > I/O > ADAM
- Assign the address 1 to your slave system, so that the CPU is able to recognize the system as central periphery system
- Add your modules to the slave system in the same order you have assembled them. Start with the CPU at plug-in location 0
- Include your System 82xx modules starting at plug-in location 1



#### Master projecting of the CPU 821xDPM

When projecting a CPU 821xDPM you include the central modules like described above. Slave systems that shall be connected to the master are added to the already existing master system:

| CPU 821xDPM central                                         |                |                      | _                   |
|-------------------------------------------------------------|----------------|----------------------|---------------------|
| ⇒(0) UR                                                     | PROFIBUS(1): [ | P-Mastersystem [1    | DP slaves decentral |
| 2 315-20P (2AF01-0A80)<br>32 DPMontor<br>3<br>PB-<br>Add.:2 | PB-<br>Add.:1  | ADAM 821X            | PB-                 |
|                                                             | Slot           | Module               |                     |
|                                                             | 0              | 821x-2BM01           |                     |
|                                                             | 1              | central<br>periphery |                     |
| L                                                           |                |                      |                     |

Project engineering of the CPU 821xDP in a master system When configuring a CPU 821xDP, the central plugged-in modules are parameterized like shown above.

#### Slave parameterization

As intelligent slave, the Profibus section maps its data areas into the memory area of the CPU 821xDP. The assignment of the areas is fixed via the propierties of the CPU 821xDP. These areas have to be provided with an according PLC program.



#### Attention!

The length values of input and output area have to be identical to the byte values of the master project engineering. Otherwise no Profibus communication is possible (slave failure).

#### Steps of project engineering in the DP master

- Configure the CPU with DP master system (address 2)
- Add Profibus slave 821xDP (GSD-file required)
- Assign Profibus input and output area starting with plug-in location 0

#### The following picture illustrates the project engineering:



Master projecting of the CPU 821xNET The project engineering of network connections via TCP/IP takes place via the configuration tool WinNCS from Advantech.

## **Application fields**

This series of CPU modules provides access to the peripheral modules of the ADAM System 8xxx. You can use a set of standard commands and programs to interrogate sensors and actuators. One single CPU may address a maximum of central 32 modules.

## Application example

Compact centralized configuration







Application based on TCP/IP or H1



### **Features**

The PLC-CPUs are employed as program executor.

They support the input/output modules and process the data from the function modules.

- Quick programming due to the compatibility with Siemens STEP<sup>®</sup>7.
- The compact construction requires less space.
- Enhanced flexibility provided by up to 32 function modules (DIG I/O, ANA I/O, SSI, pulse counter, communication modules, etc.).
- Additional function modules can be added quickly and easily by means of plug-in bus extension options.
- User-friendly maintenance using a PC via MPI.
- Optional Ethernet or Profibus interface.

## Operating modes of a CPU

| General                      | These CPUs are intended for small and medium sized applications and are<br>supplied with an integrated 24V power supply. The CPU contains a<br>standard processor with internal program memory. In combination with the<br>System 82xx peripherals the unit provides a powerful solution for process<br>automation applications within the System 82xx family.<br>A CPU supports the following modes of operation: |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                              | <ul><li> cyclic processing</li><li> timer processing</li></ul>                                                                                                                                                                                                                                                                                                                                                     |  |
|                              | alarm controlled processing                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                              | priority based processing                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Cyclic processing            | <b>Cyclic</b> processing represents the major portion of all the processes that are executed in the CPU. Identical sequences of operations are repeated in a never ending cycle.                                                                                                                                                                                                                                   |  |
| Timer processing             | Where a process requires control signals at constant intervals you can initiate certain operations based upon a <b>timer</b> , e.g. not critical monitoring functions at one-second intervals.                                                                                                                                                                                                                     |  |
| Alarm controlled operation   | If a process signal requires a quick response you would allocate this signal to an <b>alarm controlled</b> procedure. An alarm may activate a procedure in your program.                                                                                                                                                                                                                                           |  |
| Priority based<br>processing | The above processes are handled by the CPU in accordance with their <b>priority</b> . Since a timer or an alarm event requires a quick reaction the CPU will interrupt the cyclic processing when these high-priority events occur to react to the event. Cyclic processing will resume once the reaction has been processed. This means that cyclic processing has the lowest priority.                           |  |

## CPU 821x programs

| Overview       | <ul><li>The program that is present in every CPU is divided as follows:</li><li>System routine</li><li>User program</li></ul>                                                   |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System routine | The system routine organizes all those functions and procedures of the CPU that are not related to a specific control application.                                              |
| User program   | This consists of all the functions that are required for the processing of a specific control application. The operating modules provide the interfaces to the system routines. |

## CPU 821x operands

| Overview                       | <ul> <li>The following operands are available for programming the CPU 821x:</li> <li>Process image and periphery</li> <li>Bit memory/marker</li> <li>Timers and counters</li> <li>Data blocks</li> </ul>                                  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process image<br>and periphery | <ul> <li>The user program can quickly access the process image of the inputs and outputs PAA/PAE. You may manipulate the following types of data:</li> <li>individual bits</li> <li>bytes</li> <li>words</li> <li>double words</li> </ul> |
|                                | You may also gain direct access to peripheral modules via the bus from your user program. The following types of data are available:                                                                                                      |

- bytes
- words
- blocks

**Bit memory** Bit memory is an area of memory that is accessible to the user program by means of certain operations. Bit memory is intended to store frequently used working data.

You may access the following types of data:

- individual bits
- bytes
- words
- double words
- **Timer and counter** With your program you may load a time cell with a value between 10ms and 9990s. As soon as the user program executes a start operation the value of this timer is decremented by the interval that you have specified until it reaches zero.

You may load counter cells with an initial value (max. 999) and increment or decrement this when required.

**Data blocks** A data block contains constants or variables in form of bytes, words or double words. You may always access the current data block by means of operands.

You may access the following types of data:

- individual bits
- bytes
- words
- double words

## Chapter 2 Hardware description

| Outline  | The CPUs 821x are available in different versions that are described in<br>chapter. In addition to the hardware description the chapter also con-<br>installation and commissioning instructions and applications for the mer-<br>modules.<br>A summary of the integrated FBs and OBs and the technical data cond-<br>the chapter. | this<br>tains<br>mory                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|          | <ul> <li>The following section contains descriptions of:</li> <li>the components of the CPUs along with controls and displays</li> <li>the modules integrated into the CPU</li> <li>technical data</li> </ul>                                                                                                                      |                                                                |
| Contents | Topic       F         Chapter 2 Hardware description                                                                                                                                                                                                                                                                               | <b>Page</b><br><b>2-1</b><br>2-2<br>2-7<br>2-9<br>2-14<br>2-15 |

## System overview

The ADAM CPU-821x family of products available from Advantech consists of 3 different models each with 4 versions:

- CPU 821x PLC-CPU
- CPU 821xNET PLC-CPU with Ethernet interface
- CPU 821xDP PLC-CPU with Profibus slave
- CPU 821xDPM PLC-CPU with Profibus master

All CPUs 821x are available in the versions 8214, 8215 and 8216.

#### CPU 821x

- Instruction set compatible with Siemens STEP®7
- MP-Interface for data transfer between PC and CPU
- Status LEDs for operating mode and diagnostics
- External memory card (MMC)
- "On board" memory



Order data CPU 821x

| Туре        | Order number    | Description                                                                    |
|-------------|-----------------|--------------------------------------------------------------------------------|
| CPU 8214    | ADAM-8214-1BA01 | PLC CPU 8214 with 32KB of memory                                               |
| CPU 8215    | ADAM-8215-1BA01 | PLC CPU 8215 with 64KB of memory                                               |
| CPU 8216    | ADAM-8216-1BA01 | PLC CPU 8215 with 128KB of memory                                              |
| MMC         | ADAM-8953-0KX00 | MMC storage module                                                             |
| Green Cable | ADAM-8950-0KB00 | PG/AG download cable RS232/MPI,<br>serial (only for usage at ADAMCPUs<br>8xxx) |

**CPU 821xNET** Identical to CPU 821x, additionally with:

- direct connection of twisted pair cable via RJ45 socket
- data throughput of up to 100 messages/sec
- bus load reduced by up to 20% due to simplified handshaking procedure
- drivers for different SCADA systems like zenOn, InTouch, etc.



| Order data  |
|-------------|
| CPU 821xNET |

| Туре        | Order number | Description                            |
|-------------|--------------|----------------------------------------|
| CPU 8214NET | ADAM-8214-   | PLC CPU 214 with Ethernet and 32KB of  |
|             | 2BT01        | memory                                 |
| CPU 8215NET | ADAM-8215-   | PLC CPU 215 with Ethernet and 64KB of  |
|             | 2BT01        | memory                                 |
| CPU 8216NET | ADAM-8216-   | PLC CPU 216 with Ethernet and 128KB of |
|             | 2BT01        | memory                                 |
| MMC         | ADAM-8953-   | MMC storage module                     |
|             | 0KX00        |                                        |
| Green Cable | ADAM-8950-   | PG/AG download cable RS232/MPI, serial |
|             | 0KB00        | (only for usage at ADAM CPUs 8xxx)     |

CPU 821xDP Identical to CPU 821x, additionally with

- integrated Profibus slave
- status LEDs for Profibus status and diagnostics



Order data CPU 821xDP

| Туре        | Order number    | Description                         |
|-------------|-----------------|-------------------------------------|
| CPU 88214DP | ADAM-8214-2BP01 | SPS CPU 214 with Profibus slave and |
|             |                 | 32KB of memory                      |
| CPU 8215DP  | ADAM-8215-2BP01 | SPS CPU 215 with Profibus slave and |
|             |                 | 64KB of memory                      |
| CPU 8216DP  | ADAM-8216-2BP01 | SPS CPU 216 with Profibus slave and |
|             |                 | 128KB of memory                     |
| MMC         | ADAM-8953-0KX00 | MMC storage module                  |
| Green Cable | ADAM-8950-0KB00 | PG/AG download cable RS232/MPI,     |
|             |                 | serial (only for usage at ADAM CPUs |
|             |                 | 8xxx)                               |

CPU 821xDPM Like CPU 821x, additionally with

- integrated Profibus-DP master
- Status-LEDs for Profibus status and diagnostics



#### Order data CPU 821xDPM

| Туре        | Order number    | Description                         |
|-------------|-----------------|-------------------------------------|
| CPU 8214DPM | ADAM-8214-2BM01 | PLC CPU 214 with Profibus-DP master |
|             |                 | and 32kByte memory                  |
| CPU 8215DPM | ADAM-8215-2BM01 | PLC CPU 215 with Profibus-DP master |
|             |                 | and 64kByte memory                  |
| CPU 8216DPM | ADAM-8216-2BM01 | PLC CPU 216 with Profibus-DP master |
|             |                 | and 128kByte memory                 |
| MMC         | ADAM-8953-0KX00 | MMC storage module                  |
| Green Cable | ADAM-8950-0KB00 | PG/AG download cable RS232/MPI,     |
|             |                 | serial (only for usage at ADAM CPUs |
|             |                 | 8xxx))                              |

**General** A CPU is an intelligent module. Your controlling programs are executed here. You are able to select one of three CPUs, depending on the performance required from your system. The higher the performance of the CPU, the more user memory is available.

The CPUs 821x are intended for small to medium applications and have an integrated 24V power supply. The CPUs contain a standard processor with internal program memory for the storage of user-programs. In addition, every CPU 821x is equipped with a socket for a memory module, which is located on the front.

Every CPU has an MPI-interface and is instruction set compatible with the Siemens STEP<sup>®</sup>7. The CPU series 214...216 have similar performance as the Siemens STEP<sup>®</sup>7 CPU series.

This series of CPUs provides access to the peripheral modules of the System 82xx. You may query sensors and control actuators by means of standardized commands and programs. The unit can address a maximum of 32 modules. You may parameterize the CPU via the integrated MPI-interface.

The remainder of this description refers to all CPUs of the CPU 821x family, since the CPUs 8214, 8215 and 8216 are functionally identical and their only difference is the memory size.

#### **Properties**

- Instruction set compatible to Siemens STEP7<sup>®</sup>
- Configuration by means of the Siemens STEP7<sup>®</sup> manager
- Integrated 24V power supply
- Total address range: 1024Byte inputs, 1024Byte outputs (128Byte process image each)
- 32...128kByte of work memory
- 40...192kByte of load memory
- Battery backed clock
- Memory-card socket
- MPI-interface
- Integrated V-Bus controller for controlling System 82xx peripherals
- User programs can be saved to the external memory card (MMC)
- 128 timer
- 64 counter
- 256Byte of bit memory

## **Structure**

Front view

**CPU 821x** 



- [1] RUN/STOP/OVERALL RESET operating mode selector switch
- [2] Status indicator LEDs
- Socket for MMC memory card [3]
- MP<sup>2</sup>I-interface [4]
- Connector for 24V DC power [5] supply

### Front view **CPU 821xNET**



- [1] RUN/STOP/OVERALL RESET operating mode selector switch [2]
  - Status indicator LEDs
- [3] Socket for MMC memory card
- MP<sup>2</sup>I-interface [4]
- Connector for 24V DC power [5] supply
- Status indicator LEDs Ethernet [6]
- Twisted Pair interface for [7] Ethernet

#### Front view CPU 821xDP



- [1] RUN/STOP/OVERALL RESET operating mode selector switch
- [2] Status indicator LEDs
- [3] Socket for MMC memory card
- [4] MP<sup>2</sup>I-interface
- [5] Connector for 24V DC power supply
- [6] Profibus-DP slave status indicator LEDs
- [7] Profibus interface

### Front view CPU 821xDPM



- [1] RUN/STOP/OVERALL RESET operating mode selector switch
- [2] LEDs status indicator CPU
- [3] Socket for MMC memory card
- [4] MP<sup>2</sup>I-interface
- [5] Connector for 24V DC power supply
- [6] <sup>1</sup>LC-Display with keys
- [7] LEDs status indicator Profibus-DP master
- [8] Profibus interface

<sup>1</sup> in development

### Components

## **CPU 821x** The components of the CPU 821x that are described here are components of all the CPUs presented in this manual.

LEDs The CPUs 821x have a number of LEDs that are used to diagnose bus conditions and to display the status of a program. The table below describes the diagnostic LEDs and the according colors. These LEDs are part of every CPU in this manual.

| Name | Color  | Description                                                  |
|------|--------|--------------------------------------------------------------|
| PW   | Yellow | Indicates CPU power on.                                      |
| RN   | Green  | CPU status is RUN.                                           |
| ST   | Red    | CPU status is STOP.                                          |
| SF   | Red    | Is turned on if a system error is detected (hardware defect) |
| FC   | Red    | Is turned on when variables are forced (fixed).              |
| MC   | Yellow | This LED blinks when the MMC is accessed.                    |

| Function selector<br>RN/ST/MR | You can select the operating mode STOP (ST) and RUN (RN) by means of the function selector. The CPU automatically executes the operating mode START-UP when the mode changes from STOP to RUN. |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | You may issue an overall reset by placing the switch in the Memory Reset (MR) position.                                                                                                        |

MMC socket<br/>memory cardYou may install a ADAM MMC memory module in this slot as external<br/>storage device (Order No.: ADAM-8953-0KX00).<br/>The access to the MMC takes always place after an overall reset.

Power supplyThe CPU has an internal power supply. This is connected to an external<br/>supply voltage via two terminals located on the front of the unit.<br/>The power supply requires DC 24V (20 ... 30V). In addition to the electronic<br/>circuitry of the CPU this supply voltage is used for the modules connected<br/>to the backplane bus.<br/>The electronic circuitry of the CPU is not dc-insulated from the supply<br/>voltage. The power supply is protected against reverse polarity and short

#### Note!

circuits.

Please ensure that the polarity of the supply voltage is correct.

#### Battery backup for A rechargeable battery is installed on every CPU 821x to safeguard the clock and RAM contents of the RAM when power is removed. This battery is also used to buffer the internal clock.

The rechargeable battery is maintained by a charging circuit that receives its power from the internal power supply and that maintain the clock and RAM for a max. period of 30 days.



Attention!

The CPU will operate only if the battery is healthy. The CPU will STOP when the battery is faulty. In this case the CPU should be checked. Please contact Advantech!

**MP<sup>2</sup>I** port

The MPI unit provides the link for the data transfer between the CPU and the PC. Via bus communication you are able to exchange programs and data between different CPUs that are linked over MPI.

For a serial exchange between the partners you normally need a special MPI-converter. But now you are also able to use the ADAM "Green Cable" (Order-No. ADAM-8950-0KB00), which allows you to establish a serial peer-to-peer connection over the MPI port.

Please regard the notes about the "Green Cable" in chapter 1! The pin assignment of the MPI socket is as follows:

9pin socket



| Pin | Assignment |
|-----|------------|
| 1   | reserved   |
| 2   | GND        |
| 3   | RS485_A    |
| 4   | RS485_CTS  |
| 5   | GND        |
| 6   | Vcc        |
| 7   | +DC 24V    |
| 8   | RS485_B    |
| 9   | RS485_RTS  |
**CPU 821xNET** In addition to the components described in the section on the CPU 821x the CPU 821xNET module is provided with 2 further LEDs and an Ethernet interface located at the left-hand side of the module.

**LEDs** The LEDs are located on the left-hand side of the front panel and indicate communication activities.

The table below shows the color and the meaning of these LEDs.

| Name | Color | Description   |
|------|-------|---------------|
| TxD  | green | Transmit data |
| RxD  | green | Receive data  |

**Ethernet interface** An RJ45 socket provides the interface to the twisted pair cable, required for Ethernet. The pin assignment of this socket is as follows:





| Signal     |  |  |
|------------|--|--|
| Transmit + |  |  |
| Transmit - |  |  |
| Receive +  |  |  |
| -          |  |  |
| -          |  |  |
| Receive -  |  |  |
| -          |  |  |
| -          |  |  |
|            |  |  |

#### Star topology

A twisted pair network can only have a star topology. For this purpose a hub is required as the central node:





#### Note!

For more detailed information on twisted pair networks refer to chapter "Deployment of the CPU 821xNET".

**CPU 821xDP** In addition to the components described in the section on the CPU 821x the CPU 821xDP module is provided with 3 more LEDs and a Profibus interface.

**LEDs** The LEDs are located in the left half of the front panel and they are used for diagnostic purposes. The following table shows the color and the significance of these LEDs.

| Name | Color  | Description                                                                                     |
|------|--------|-------------------------------------------------------------------------------------------------|
| ER   | red    | On when an error is detected (Error).                                                           |
|      |        | On when the CPU has been stopped.                                                               |
|      |        | Flashes slowly (2Hz) at initialization error                                                    |
|      |        | Flashes quickly (10Hz) when supply voltage falls below 18V.                                     |
|      |        | Flashes alternately with RD when the master configuration is bad (project configuration error). |
|      |        | Flashes simultaneously with RD when<br>parameterization is bad                                  |
| RD   | green  | On when a data transfer is active via the V-bus.                                                |
|      |        | Flashes when the self-test result is positive (READY) and the initialization was successful.    |
| DE   | yellow | DE (Data exchange) indicates an active Profibus communication.                                  |

## **Profibus interface** The CPU 821xDP is connected to the Profibus system by means of a 9pin socket. The pin assignment of this interface is as shown:

| $\left  \begin{array}{c} 0 \\ 7 \\ 0 \\ 2 \end{array} \right $ |  |
|----------------------------------------------------------------|--|
|                                                                |  |
|                                                                |  |
| $\sim$                                                         |  |

9pin Profibus D-type socket:

| Pin | Assignment     |
|-----|----------------|
| 1   | Screen         |
| 2   | not used       |
| 3   | RxD/TxD-P      |
| 4   | CNTR-P         |
| 5   | GND            |
| 6   | 5V (max. 70mA) |
| 7   | not used       |
| 8   | RxD/TxD-N      |
| 9   | not used       |

Note!

Refer to the chapter "Deployment of the CPU 821xDP" for details on the Profibus.

**CPU 821xDPM** In addition to the components described in the section on the CPU 821x the CPU 821xDPM module is provided with 4 more LEDs and a Profibus interface.

**LEDs** The LEDs are located in the left half of the front panel and they are used for diagnostic purposes. The following table shows the color and the significance of these LEDs.

| Name | Color  | Description                                                                                                                                                                                                                                        |
|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RN   | green  | If RN is the only LED that is on, then the master<br>status is RUN. The slaves are being accessed and<br>the outputs are 0 ("clear" state).<br>If both RN+DE are on the status of the Master is<br>"operate". It is communicating with the slaves. |
| IF   | red    | Initialization error for bad Profibus configurations                                                                                                                                                                                               |
| DE   | yellow | DE (Data exchange) indicates Profibus<br>communication activity.                                                                                                                                                                                   |
| ER   | red    | On when a slave has failed (ERROR).                                                                                                                                                                                                                |

### **Profibus interface** The CPU 821xDPM is connected to the Profibus system by means of a 9pin socket. The pin assignment of this interface is as shown:

9pin Profibus D-type socket:

| Pin | Assignment     |
|-----|----------------|
| 1   | Screen         |
| 2   | not used       |
| 3   | RxD/TxD-P      |
| 4   | CNTR-P         |
| 5   | GND            |
| 6   | 5V (max. 70mA) |
| 7   | not used       |
| 8   | RxD/TxD-N      |
| 9   | not used       |

### Note!

Refer to the chapter "Deployment of the CPU 821xDPM" for details on the Profibus master.



### **Block diagram**

The following block diagram shows the basic hardware construction of the CPU 821x modules:



### **Technical data**

### CPU 821x

### General

| Electrical data                       | ADAM-8214-1BA01 ADAM-8216-1BA01                     |
|---------------------------------------|-----------------------------------------------------|
| Power supply                          | DC 24V                                              |
| Current consumption                   | max. 1.5A                                           |
| Dissipation power                     | max. 3.5W                                           |
| Status indicators (LEDs)              | by means of LEDs located on the front               |
| Connections / interfaces              | MP <sup>2</sup> I-Slot for data communication       |
| Clock, memory/clock backup            | yes / Lithium accumulator, 30 days backup           |
| Output current to backplane bus       | max. 3A                                             |
| Bit memory                            | 2048Bit (M0.0M255.7)                                |
| Timer                                 | 128 (T0T127)                                        |
| Counters                              | 256 (Z0 Z255)                                       |
| Number of Blocks FB                   | 1024 (FB0FB1023)                                    |
| FC                                    | 1024 (FC0FC1023)                                    |
| DB                                    | 2047 (DB1DB2047)                                    |
| Total addressing space input / output | 1024/1024Byte, each 128 Byte for process image (PA) |
| PA Inputs                             | 1024Bit (E0.0E127.7)                                |
| PA Outputs                            | 1024Bit (A0.0A127.7)                                |
| Combination with peripheral modules   |                                                     |
| max. no. of modules                   | 32                                                  |
| max. digital I/O                      | 32                                                  |
| max. analog I/O                       | 16                                                  |
| Addressable inputs, outputs           | 1024 (digital), 128/128 (analog)                    |
| Dimensions and weight                 |                                                     |
| Dimensions (WxHxD) in mm              | 25.4x76x76                                          |
| Weight                                | 80g                                                 |

### Module specific

|                            | CPU 8214        | CPU 8215        | CPU 8216        |
|----------------------------|-----------------|-----------------|-----------------|
| Work memory                | 32kByte         | 64kByte         | 128kByte        |
| Load memory                | 40kByte         | 80kByte         | 192kByte        |
| Cycle time bit operations  | 0.18µs          | 0.18µs          | 0.18µs          |
| Cycle time word operations | 0.78µs          | 0.78µs          | 0.78µs          |
|                            |                 |                 |                 |
| Order-No.:                 | ADAM-8214-1BA01 | ADAM-8215-1BA01 | ADAM-8216-1BA01 |

### CPU 821xNET

| Electrical data          | ADAM-8214-2BT01 ADAM-8216-2BT01                                           |
|--------------------------|---------------------------------------------------------------------------|
| Power supply             | via backplane bus                                                         |
| Current consumption      | max. 380mA                                                                |
| Potential separation     | ≥ 500V AC                                                                 |
| Status indicator (LEDs)  | like CPU 821x additionally with LEDs for the Ethernet section             |
| Connections/interfaces   | like CPU 821x additionally with RJ45 socket for Twisted-Pair-<br>Ethernet |
| Ethernet interface       |                                                                           |
| Connector                | RJ45                                                                      |
| Network topology         | Star topology                                                             |
| Medium                   | Twisted pair                                                              |
| Transfer rate            | 10Mbit                                                                    |
| Overall length           | max. 100m per segment                                                     |
| Dimensions and weight    |                                                                           |
| Dimensions (WxHxD) in mm | 50.8x76x76                                                                |
| Weight                   | 150g                                                                      |

### CPU 821xDPM

| Electrical Data                     | ADAM-8214-2BM01 ADAM-8216-2BM01                                                             |
|-------------------------------------|---------------------------------------------------------------------------------------------|
| Power supply                        | via backplane bus                                                                           |
| Current consumption                 | max. 380mA                                                                                  |
| Potential separation                | ≥ 500V AC                                                                                   |
| Status monitoring (LEDs)            | like CPU 821x additionally with LEDs for the Profibus section                               |
| Adapters/interfaces                 | like CPU 821x additionally with 9pin D-type socket (Profibus)                               |
| Profibus interface                  |                                                                                             |
| Connector                           | 9pin D-type socket                                                                          |
| Network topology                    | Linear bus, active bus termination at both ends                                             |
| Medium                              | Screened and drilled twisted pair cable. Depending on environment screening may be omitted. |
| Transfer rate                       | 9.6kBaud up to 12MBaud                                                                      |
| Overall length                      | 100m at 12 MBaud without repeater, up to 1000m with repeater                                |
| max. no. of stations                | 32 stations on every segment without repeater. Expandable to 126 stations with repeater.    |
| Combination with peripheral modules |                                                                                             |
| max. number of slaves               | 125                                                                                         |
| max. number of input bytes          | 1024                                                                                        |
| max. number of output bytes         | 1024                                                                                        |
| Dimensions and Weight               |                                                                                             |
| Dimensions (WxHxD) in mm            | 50.8x76x76                                                                                  |
| Weight                              | 150g                                                                                        |

### CPU 821xDP

| Electrical data          | ADAM-8214-2BP01 ADAM-8216-2BP01                                                             |
|--------------------------|---------------------------------------------------------------------------------------------|
| Power supply             | via backplane bus                                                                           |
| Current consumption      | max. 380mA                                                                                  |
| Potential separation     | ≥ 500V AC                                                                                   |
| Status indicator (LEDs)  | like CPU 21x additionally with LEDs for the Profibus section                                |
| Adapters/interfaces      | like CPU 21x additionally with 9pin D-type socket (Profibus)                                |
| Profibus interface       |                                                                                             |
| Connector                | 9pin D-type socket                                                                          |
| Network topology         | Linear bus, active bus termination at both ends                                             |
| Medium                   | Screened and drilled twisted pair cable. Depending on environment screening may be omitted. |
| Transfer rate            | 9.6kBaud up to 12MBaud                                                                      |
| Overall length           | 100m at 12 MBaud without repeater, up to 1000m with repeater                                |
| max. no. of stations     | 32 stations on every segment without repeater.<br>Expandable to 126 stations with repeater. |
| Dimensions and weight    |                                                                                             |
| Dimensions (WxHxD) in mm | 50.8x76x76                                                                                  |
| Weight                   | 150g                                                                                        |

### Chapter 3 Deployment of the CPU 821x

| Outline  | This chapter describes the deployment of the CPU 821x together with peripheral modules of the System 82xx.                                                           | the          |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|          | Besides commissioning and start-up behavior you will find here also<br>description of the project engineering, parameterization, operating mo<br>and test functions. | o a<br>des   |
|          | This information also basically applies to the deployment of a bus reNET-CPU (CPU 821xDP, CPU 821xNET).                                                              | esp.         |
|          | More detailed information about the deployment of the bus resp. N CPUs is to find in the concerning chapters of this manual.                                         | ET-          |
|          | The following section contains a description of:                                                                                                                     |              |
|          | Assembly and commissioning     Principle of address allocation                                                                                                       |              |
|          | <ul> <li>Project engineering and parameterization</li> </ul>                                                                                                         |              |
|          | Deployment of MPI and MMC                                                                                                                                            |              |
|          | Operating modes and overall reset                                                                                                                                    |              |
|          | Usage of test functions                                                                                                                                              |              |
| Contents | Topic Pa                                                                                                                                                             | age          |
|          | Chapter 3 Deployment of the CPU 821x                                                                                                                                 | 3-1          |
|          | Start-up behavior                                                                                                                                                    | 3-2          |
|          | Address allocation                                                                                                                                                   | 3-3          |
|          | Preparations required for configuration                                                                                                                              | 3-5          |
|          | Configuration of directly installed System 82xx modules                                                                                                              | 3-6          |
|          | Configuration of the CPU parameters                                                                                                                                  | 3-8          |
|          | Project transfer                                                                                                                                                     | 3-10         |
|          | Operating modes                                                                                                                                                      | 5-13         |
|          | Assembly 3                                                                                                                                                           | >-14<br>₹_16 |
|          | Recalling version and performance information                                                                                                                        | }-10<br>}-17 |
|          | Using test functions for the control and monitoring of variables                                                                                                     | 3-18         |
|          |                                                                                                                                                                      |              |



### Note!

This information is valid for all the CPUs described in this manual since the backplane bus communication between the CPU and the peripheral modules is the same for all models of this CPU!

### Start-up behavior

Turn on<br/>power supplyAfter turning on the power supply, the CPU switches to the operating mode<br/>that is fixed by the operating mode lever at the CPU.<br/>Now you may transfer your project from your projecting tool into the CPU

via MPI resp. plug-in a MMC containing your project and request an OVERALL\_RESET.

**OVERALL\_RESET** The following picture shows the approach:





### Note!

The transfer of the user application from the MMC into the CPU takes always place after an OVERALL RESET!

| Start-up after<br>delivery             | After delivery the CPU is totally clear.<br>After a STOP $\rightarrow$ RUN transition, the CPU switches to RUN without application.                                                                                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start-up with valid<br>data on the CPU | The CPU switches to RUN with the application located in the battery buffered RAM.                                                                                                                                     |
| Start-up with<br>empty battery         | The battery is loaded directly via the integrated power supply and provides<br>a buffer for up to 30 days. If this time is exceeded, the battery may be<br>totally discharged and the battery buffered RAM is erased. |
|                                        | In this state the CPU starts an overall_reset. If a MMC is plugged in, the program of the MMC is transferred into the RAM.                                                                                            |
|                                        | Depending on the selected operating mode the CPU switches to RUN resp. stays in STOP.                                                                                                                                 |
|                                        | This procedure is fixed in the diagnostic buffer with this entry: "Automatic start OVERALL_RESET (unbuffered POWER-ON)".                                                                                              |

### **Address allocation**

| Automatic<br>addressing                  | To provide specific addressing of the installed peripheral modules, certain addresses must be allocated in the CPU.<br>The CPU contains a peripheral area (addresses 01023) and a process image of the inputs and the outputs (for both each address 0127).<br>When the CPU is initialized it automatically assigns peripheral addresses to the digital input/output modules starting from 0.<br>If there is no hardware projecting, analog modules are allocated to even addresses starting from address 256. |                                                                                                        |                                                                                                                |                          |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|
| Signaling states in<br>the process image | The signaling states of<br>in a special memory a<br>The process image is<br>• process image of th<br>• process image of th<br>• Peripheral area<br>0<br>• Digital modules                                                                                                                                                                                                                                                                                                                                      | of the lower ac<br>irea called the<br>divided into tw<br>ne inputs (PAE<br>ne outputs (PAE<br>127<br>0 | Idresses (0127<br>process image.<br>vo parts:<br>E)<br>AA)<br>Process image<br>Inputs<br>PAE<br>Outputs<br>PAA | ) are additionally saved |
|                                          | The process image completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is updated a                                                                                           | automatically wh                                                                                               | en a cycle has been      |
| Read/write access                        | You may access the peripheral bytes or on                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | modules by m<br>the process in                                                                         | eans of read or mage.                                                                                          | write operations on the  |
| 1                                        | <b>Note!</b><br>Please remember that<br>and write operations of                                                                                                                                                                                                                                                                                                                                                                                                                                                | t you may acc                                                                                          | ess <u>different</u> mod                                                                                       | dules by means of read   |

and write operations on the same address. The addressing ranges of digital and analog modules are different when they are addressed automatically.

Digital modules: 0...127

Analog modules: 128...1023

Example for the automatic



#### The following figure illustrates the automatic allocation of addresses:

#### Modifying allocated addresses by configuration

You may change the allocated addresses at any time by means of the Siemens STEP<sup>®</sup>7 manager. In this way you may also change the addresses of analog modules to the range covered by the process image (0...127) and address digital modules above 127.

The following pages describe the required preparations and the procedure for this type of configuration.

### **Preparations required for configuration**

| General                                                 | The following information always refers to modules that have been installed<br>on the same bus adjacent to the CPU.<br>In order to address the installed peripheral modules individually, specific<br>addresses in the CPU have to be assigned to them.<br>The allocation of addresses and the configuration of the installed modules<br>is a function of the Siemens STEP <sup>®</sup> 7 manager where the modules appear<br>as a virtual Profibus system. For the Profibus interface is software<br>standardized, we are able to guarantee the complete functionality of the<br>System 82xx together with the Siemens STEP <sup>®</sup> 7 manager by including a<br>GSD-file (german: <b>G</b> eräte <b>S</b> tamm <b>D</b> atei = GSD-file).<br>The project is transferred serial to the CPU via the MPI-interface. |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requirements                                            | <ul> <li>The following requirements must be satisfied before starting the configuration of the modules:</li> <li>The Siemens STEP<sup>®</sup>7 manager must have been installed</li> <li>The GSD-file must have been included in the Siemens hardware configurator</li> <li>A serial connection to the CPU must have been established (e.g. with the "Green Cable" from Advantech)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         | <b>Note!</b><br>The configuration of the CPU requires a thorough knowledge of the Siemens STEP <sup>®</sup> 7 manager and the hardware configurator!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Installation of the<br>Siemens hardware<br>configurator | The hardware configurator is a component of the Siemens STEP <sup>®</sup> 7 project configuration tool. A list of modules that may be configured by this tool can be obtained from the hardware catalog.<br>Before they are ready for usage, the System 82xx modules have to be included in the hardware catalog by means of the ADAM GSD-file.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Including the<br>GSD- file                              | <ul> <li>Copy all ADAM GSD-files into your GSD-directory \siemens\step7\s7data\gsd</li> <li>Start the Siemens hardware configurator</li> <li>Close all projects</li> <li>Go to Options &gt; Install new GSD-file</li> <li>Enter all gsd files</li> <li>Now the modules of the ADAM System 82xx have been integrated into the hardware catalog and are available for configuration.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          |

### Configuration of directly installed System 82xx modules

Configuration as a virtual Profibus master system

The System 82xx modules located adjacent to the CPU on the V bus have to be configured as a virtual Profibus master system by means of the Siemens hardware configurator as described below:

- Create a new project.
- Insert the CPU 315-2DP (6ES7 315-2AF01-0AB0). You have to create a new Profibus subnet.
- Attach the System "ADAM\_DP8000" to the subnet. The respective entries are located in the hardware catalog under *PROFIBUS DP* > *Additional Field Devices* > *IO* > *ADAM821x*. Assign Profibus address 1 to this slave.
- Place the ADAM CPU 821x that you want to deploy at plug-in location 0 of the configurator. **Plug-in location 0 is mandatory!**
- Include your System 82xx modules in the location sequence starting from plug-in location 1.
- Save your project.

| HW Config - SIMATIC 300(1)                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station Edit Insert PLC View Options Window Help                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                 | <u>₩</u> <u>N</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 🔤 SIMATIC 300(1) (Configuration) 8214DPMmit Slave                                                                                                                                                                                                                                                                               | _811xDP                          | Profile Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DP Master         (1) ADAM-CPU82           3         DP Master           4         5           6         7           8         -                                                                                                                                                                                                | DP master system (1)             | I/0     I/0     I/0 ANAGER     O     ADAM_CPU31X0P     O     ADAM_CPU31X0P     O     ADAM_CPU31X0P     O     ADAM_CPU31X     D     ADAM_CPU31X     O     Codes     O     Codes     O     Codes     O     Codes     O     Codes     O     Codes     O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                 |                                  | E Compatible PROFIBUS D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (3) ADAM_CPU821x<br>Stot I Module / Order number   Address   Q A                                                                                                                                                                                                                                                                | Address Comment                  | Configured Stations<br>Configured Stations<br>Configured Stations<br>DP/A25 as DP Master<br>DP/A5-i<br>DP/A5-i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 0 8214-28M01 CPU                                                                                                                                                                                                                                                                                                              |                                  | ENCODER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1         000         022215700 U0000         0           2         3         -         -           3         -         -         -           4         -         -         -           5         -         -         -           6         -         -         -         -           7         -         -         -         - |                                  | □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □ |
| 8<br>9<br>10<br>11<br>12<br>13<br>                                                                                                                                                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Press F1 to get Help.                                                                                                                                                                                                                                                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mess Fi to get nep.<br>∰Start 6 @ \$ 21 ₽ > 00 P ⊠A ⊠W.                                                                                                                                                                                                                                                                         | 🕱 M., ØT., 😋 e., ØD., 🌇 U., 🖂 W. | 10 <b>4</b> 5   <b>11.</b>   12.5 <b>()      () () () ()</b>    14:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

**Configuration of** modules System 82xx modules may be supplied with up to 16Byte of configuration data from the CPU. The use of the Siemens STEP<sup>®</sup>7 manager provide the option to supply parameters to the configurable System 82xx modules at any time.

For this purpose you have to double-click the respective module in the plug-in diagram.

The following figure shows the configuration of the positioning module IM 8254:

| 🖳 HW Konfig -     | SIMATIC 300(1)                                                  |                                |               |                                 |               | _ 8 ×                       |
|-------------------|-----------------------------------------------------------------|--------------------------------|---------------|---------------------------------|---------------|-----------------------------|
| Station Bearbe    | eiten Einfügen Zielsystem Ans<br>2 1260 / 226   126   126   126 | icht Extras Fenster Hilfe      |               |                                 |               |                             |
|                   | 100(1) (Konfiguration) 821x:                                    |                                | _             |                                 | _ 0           |                             |
|                   |                                                                 |                                |               |                                 |               | ADAM CDU001                 |
| 🚍 (0) UR          |                                                                 |                                |               |                                 |               |                             |
| 1                 | PR PR                                                           | OFIBUS(1): DP-Mastersystem (1) |               | igenscharten - DP-Slave         |               |                             |
|                   | PU 315                                                          | TOURING                        |               | Adresse / Kennung Parametrieren |               |                             |
| 3                 |                                                                 | (J) ADAM_                      |               | Parametername                   | Wert          |                             |
| 4                 |                                                                 |                                |               | max rotation speed              | 10            |                             |
| 5                 |                                                                 |                                |               | P gain factor                   | 0             |                             |
| b<br>7            |                                                                 |                                |               | kev increments                  | 10            |                             |
|                   |                                                                 |                                |               | reference speed                 | 10            |                             |
| 1.0               |                                                                 | /11111111111111                |               | contouring window               | 1             |                             |
| 1                 |                                                                 |                                |               |                                 |               |                             |
|                   |                                                                 |                                |               |                                 |               |                             |
| [] 💶 (3) AD       | DAM_CPU821x                                                     |                                |               |                                 |               |                             |
| Steckplatz        | Baugruppe / DP-Kennung                                          | Bestellnummer                  | E-Adresse     |                                 |               |                             |
| 0                 | 0                                                               | 8216-1BA01 CPU 8216            |               |                                 |               |                             |
| 1                 | 4AE                                                             | 8231-1BD52 Al4x16Bit Universal | 256263        |                                 |               |                             |
| 2                 | 191                                                             | 8254-TBAUU FM 8254 Servo       | 264279        |                                 |               | -1                          |
| 4                 | 2                                                               |                                |               | •                               |               |                             |
| 5                 |                                                                 |                                |               |                                 |               |                             |
| 6                 |                                                                 |                                |               |                                 | Hey-Parameter | Wert ändern                 |
| 1                 |                                                                 |                                |               |                                 |               |                             |
| 9                 | 2                                                               |                                |               | or                              |               |                             |
| 10                |                                                                 |                                | 1             | UK                              |               | Abbrechen Hilfe             |
| 11                |                                                                 |                                |               |                                 |               | 8221-1BF50 DI8xDC24V s      |
| $\frac{12}{13}$   |                                                                 |                                |               |                                 |               |                             |
| 14                | 12                                                              |                                |               |                                 |               | 8221-26ET0 DI328DC24V       |
| 15                |                                                                 |                                | 55            |                                 |               | 8221-1FF30 DI8xAC/DC24      |
| 16                |                                                                 |                                |               |                                 | <u>.</u>      |                             |
| -                 |                                                                 |                                |               |                                 |               |                             |
|                   |                                                                 |                                |               |                                 |               |                             |
|                   |                                                                 |                                |               |                                 |               |                             |
|                   |                                                                 |                                |               |                                 |               |                             |
| Drucken Sie F1, u | um Hilfe zu erhalten.                                           | 10-                            |               |                                 | 1 1000        | And                         |
| Start             | 🖲 🖾 📐 👋 🛛 🎜                                                     | TIC Manager - 821x             | onfig - SIMAT | IC 3 YUnbenannt - Paint         |               | 🏴 🏈 🕐 🖭 🖳 🎇 🇞 🇞 🆓 🛃 💐 20:17 |

# Transferring the<br/>projectData is transferred between the CPU and the PC via MPI. If your PU has no<br/>MPI functionality you may use the ADAM "Green Cable" to send the data<br/>serial by a peer-to-peer connection. The ADAM "Green Cable" has the<br/>OrderNo. ADAM-8950-0KB00 and may only be used with ADAM<br/>components System 8xxx.)

Please regard the notes about the "Green Cable" in chapter 1!

- Connect your PU to the CPU
- Transfer the project into the CPU by means of **PLC** > *Load into module* in your project configuration tool.
- Install an MMC and transfer the application program to the MMC by clicking on PLC > Copy RAM to ROM.
- During the write operation the MC-LED of the CPU blinks. For internal reasons the message signalizing completion of the write operation arrives too soon. The write operation is only complete when the LED has been extinguished.

### **Configuration of the CPU parameters**

Outline

The general parameters, concerning the CPU section of your CPU 821x, are to adjust in the hardware configurator from Siemens under the properties of the CPU 315-2DP.

Except of the Profibus parameters of the CPU 821xDP the CPU parameterization takes place in the parameter dialog of the CPU 315-2DP.

The parameterization of the Profibus section of the CPU 821xDP takes place via the parameterization dialog of the CPU 821x.

| BW Config - [cpu11x (Configuration) cpu21x         Bu Station Edit Insert PLC View Options Wind         D 22 Ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ @ ×<br>∞ Help _ @ ×<br>□ [17] ₩ №                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Properties - CPU 315-2 DP - (R0/S2)  Time-of-Day Interrupts Cyclic Interrupt Diagnostics/Clock General Startup Cycle/Clock Memory Retentive Memory Interrupts Short Description: CPU 315-2 DP  48 KB work memory; 0.3 ms/1000 instructions; MPI + DP connections; for multi-tier configuration up to 32 modules |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Order No.:     6ES7 315-2AF01-0AB0       Name:     CPUI 315-2 DF       Interface       Type:     MPI       Address:     2       National of the New Constraint                                                                                                                                                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cancel Help                                                                                                                                                                                                                                                                                                     |
| You can only insert modules in a rack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chg                                                                                                                                                                                                                                                                                                             |

Parameterization CPU 821x under CPU 315-2DP Per double-click on the CPU 315-2DP you reach the parameterization window of your CPU 821x. Via the different registers you may access all parameters of the CPU 315-2DP. The parameters are those of the CPU 821x from Advantech.

Please regard, that at this time not all the parameters are supported.

| Parameterization<br>of the Profibus<br>section of CPU<br>821xDP | You may reach the parameterization v<br>CPU 821x by double-clicking on the<br>ADAM_DP8000.<br>Via the different registers you may a<br>CPU 821x.<br>More information is to find in the chapt | window for the Pro<br>ne added Syster<br>ccess all Profibus<br>ter "Deployment o        | ofibus section of the<br>n 821x-CPU under<br>s parameters of the<br>f the CPU 821xDP". |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Supported<br>parameters                                         | The CPU 821x doesn't use all the pa<br>Siemens STEP <sup>®</sup> 7 manager.<br>The following parameters are currently                                                                        | arameters that ma                                                                       | ay be defined in the                                                                   |
|                                                                 | General:<br>MPI address of the CPU<br>maximum MPI address<br>Initialization:                                                                                                                 | OB10:                                                                                   | active<br>execution<br>start date<br>time-of-day                                       |
|                                                                 | Start-up, if the planned hardware<br>does not match the actual<br>hardware configuration                                                                                                     | Prompter :<br>OB35:                                                                     | execution                                                                              |
|                                                                 | Remanence:<br>Number of bytes of bit memory<br>starting at MB0<br>Number of S7-timer from T0<br>No. of S7-counters from Z0                                                                   | Cycle / timing flag<br>Cycle watchin<br>Load placed o<br>communicatio<br>Timing flags w | <i>gs:</i><br>g time<br>on cycle time due to<br>ns<br>vith flag byte no.               |

### **Project transfer**

| Outline                 | <ul><li>There are two possibilities to transfer your project into the CPU:</li><li>Transfer via MPI</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | <ul> <li>Transfer via MMC when using a MMC programmer</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Transfer via MPI        | The structure of a MPI network is principally the same than the one of a 1.5MBaud Profibus net. This means that the same rules are valid and for both networks you use the same components for building.<br>Per default the MPI net runs with 187kBaud.<br>Every bus participant identifies itself at the bus with an unique MPI address.<br>You link up the single participants via bus connectors and the Profibus bus cable.                                                                                                                                                                                                                                                                                                                                                          |
| Terminating<br>resistor | A line has to be terminated with its ripple resistor. For this you switch on the terminating resistor at the first and the last participant of a network or a segment.<br>Please take care that those participants with the terminating resistor are supplied with power during start-up and operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Approach                | <ul> <li>Connect your PU resp. PC with your CPU via MPI.</li> <li>If your PU doesn't support MPI, you may use the ADAM "Green Cable" to establish a point-to-point connection.</li> <li>The "Green Cable" has the order number ADAM-8950-0KB00 and may only be used with ADAM CPUs 8xxx.</li> <li>Configure the MPI-interface of your PC.</li> <li>Via PLC &gt; Load to module you transfer your project into the CPU.</li> <li>If you want to save your project on MMC additionally, plug-in a MMC and transfer your user application via PLC &gt; Copy RAM to ROM.</li> <li>During the write process the MC-LED at the CPU is blinking. Due to the system, the completion of the write operation arrives too soon. It is only completed when the LED has been extinguished.</li> </ul> |

**Configure MPI** Hints for configuring a MPI-interface are to find in the documentation of your programming software. At this place only the usage of the "Green Cable" from Advantech shall be shown, together with the programming tool from Siemens.

The "Green Cable" establishes a connection between the COM interface of the PC and the  $MP^2I$ -interface of the CPU.



#### Attention!

Please regard, that you may use the "Green Cable" exclusively at the MP<sup>2</sup>I jacks of the Systems 8xxx from Advantech!

Please regard the hints for deploying the Green Cable and the MP<sup>2</sup>I jack in chapter 1.

#### Approach

- Start the STEP<sup>®</sup>7 manager from Siemens
- Choose **Options** > Configure PU/PC interface
  - → The following dialog window appears, where you may configure the used MPI-interface:



- Choose " PC Adapter (MPI) ", possibly you have to add this first.
- Click on < Properties >

 $\rightarrow$  In the following two dialog windows you may configure your PC adapter like shown in the picture.

#### Note!

Please make sure to adjust the transfer rate to 38400Baud when using the "Green Cable".

| Usage of the<br>MMC   | As external storage medium the <b>M</b> ulti <b>M</b> edia <b>C</b> ard (MMC) is used (Order-<br>No.: ADAM-8953-0KX00).<br>The reading of the MMC takes always place after an OVERALL RESET.<br>You may write on the MMC via a write command from the hardware<br>configurator from Siemens or with a MMC reading device from Advantech<br>(OrderNo.: ADAM-8950-0AD00). Thus it is possible to create your<br>applications at the PC, copy them on MMC and transfer them into the CPU<br>by plugging-in the MMC.<br>The MMC modules are delivered preformatted with the file system FAT16. |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Needed files          | There may exist several projects and subfolders on one MMC module. You just have to take care, that the recent project is stored in the root directory and has the name: <b>S7PROG.WLD</b> .                                                                                                                                                                                                                                                                                                                                                                                               |
| Transfer<br>CPU → MMC | When the MMC has been installed, the write command stores the application program of the battery buffered RAM at the MMC.<br>The write command is controlled by means of the Siemens hardware configurator via <b>PLC</b> > <i>Copy RAM to ROM</i> .<br>During the write operation the yellow "MC"-LED of the CPU is blinking.                                                                                                                                                                                                                                                             |
| Transfer<br>MMC → CPU | The transfer of the user application from the MMC to the CPU always takes place after an OVERALL_RESET. The blinking of the yellow "MC"-LED indicates the active transfer process.<br>If there is no valid user application on the MMC or if the transfer fails, an OVERALL_RESET of the CPU takes place and the "STOP"-LED blinks three times.                                                                                                                                                                                                                                            |
| 1                     | <b>Note!</b><br>If the user application exceeds the user memory of the CPU, the content of the MMC is not transferred into the CPU.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

If you initiate a write command and there is no MMC plugged in, an error message about insufficient memory occurs.

It is advisable to compress the application program before transferring it into the CPU, because this is not initialized automatically.

### **Operating modes**

| Outline                    | <ul> <li>The CPU can be in one of 3 operating modes:</li> <li>STOP</li> <li>START-UP</li> <li>RUN</li> </ul> Certain conditions in the operating modes START-UP and RUN require a specific reaction from the system program. In this case the application interface is often provided by a call to an organization block that was included specifically for this event.                                                                                                                         |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating mode<br>STOP     | <ul> <li>Processing of the application program has stopped.</li> <li>If the program was being processed, the values of counters, timers, flags and the contents of the process image are retained during the transition to the STOP mode.</li> <li>Outputs are inhibited, i.e. all digital outputs are disabled.</li> <li>RUN-LED off</li> <li>STOP-LED on</li> </ul>                                                                                                                           |
| Operating mode<br>START-UP | <ul> <li>During the transition from STOP to RUN a call is issued to the start-up organization block OB100. The length of this OB is not limited. The processing time for this OB is not monitored. The start-up OB may issue calls to other blocks.</li> <li>All digital outputs are disabled during the start-up, i.e. outputs are inhibited.</li> <li>RUN-LED blinks</li> <li>STOP-LED off</li> <li>When the CPU has completed the start-up OB, it assumes the operating mode RUN.</li> </ul> |
| Operating mode<br>RUN      | <ul> <li>The application program in OB1 is processed in a cycle. Under the control of alarms other program sections can be included in the cycle.</li> <li>All timer and counters being started by the program are active and the process image is updated with every cycle.</li> <li>The BASP-signal (outputs inhibited) is deactivated, i.e. all digital outputs are enabled.</li> <li>RUN-LED on</li> <li>STOP-LED off</li> </ul>                                                            |

### **Overall Reset**

Outline

During the OVERALL\_RESET the entire user memory (RAM) is erased. Data located in the memory card is not affected.

You have 2 options to initiate an OVERALL RESET:

- initiate the overall reset by means of the function selector switch
- initiate the overall reset by means of the Siemens STEP®7 manager



#### Note!

You should always issue an overall reset to your CPU before loading an application program into your CPU to ensure that all blocks have been cleared from the CPU.

#### Overall reset by means of the function selector

#### Condition

The operating mode of the CPU is STOP. Place the function selector on the CPU in position "ST"  $\rightarrow$  the S-LED is on.

#### Overall reset

- Place the function selector in the position MR and hold it in this position for app. 3 seconds. → The S-LED changes from blinking to permanently on.
- Place the function selector in the position ST and switch it to MR and quickly back to ST within a period of less than 3 seconds.
   → The S-LED blinks (overall reset procedure).
- The overall reset has been completed when the S-LED is on permanently. → The S-LED is on.

The following figure illustrates the above procedure:



| Automatic reload                                                           | At this point the CPU attempts to reload the parameters and the program from the memory card. $\rightarrow$ The lower LED (MC) blinks.<br>When the reload has been completed the LED is extinguished. The operating mode of the CPU will be STOP or RUN, depending on the position of the function selector. |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overall reset by<br>means of the<br>Siemens STEP <sup>®</sup> 7<br>Manager | Condition<br>The operating mode of the CPU must be STOP.<br>You may place the CPU in STOP mode by the menu command<br>PLC > Operating mode.                                                                                                                                                                  |
|                                                                            | Overall reset                                                                                                                                                                                                                                                                                                |
|                                                                            | You may request the OVERALL_RESET by means of the menu command <b>PLC</b> > <i>Clear/Reset</i> .                                                                                                                                                                                                             |
|                                                                            | In the dialog window you may place your CPU in STOP mode if this has not been done as yet and start the overall reset.                                                                                                                                                                                       |
|                                                                            | The S-LED blinks during the overall reset procedure.                                                                                                                                                                                                                                                         |
|                                                                            | When the S-LED is on permanently the overall reset procedure has been completed.                                                                                                                                                                                                                             |
| Automatic reload                                                           | At this point the CPU attempts to reload the parameters and the program from the memory card. $\rightarrow$ The lower LED (without label) blinks.                                                                                                                                                            |
|                                                                            | When the reload has been completed, the LED is extinguished. The operating mode of the CPU will be STOP or RUN, depending on the position of the function selector.                                                                                                                                          |

### Assembly



### Attention!

It is mandatory to turn off the power supply before you insert or remove any modules!

Please note that the CPU may only be installed into plug-in location 1 or 2 (see figure below).



For details on the assembly of System 82xx modules please refer to the System 82xx manual (Order-No.: ADAM-HB97).

### **Recalling version and performance information**

Outline As soon as you are online with your CPU 821x you have the possibility to recall the module state.

You may find the module state in the STEP<sup>®</sup>7 manager from Siemens under the **PLC** functions.

 Approach
 Open your project. Click on the system you want to examine.

 Now open the dialog window about the module state via PLC > Module information.

 Besides the possibility to recall numerous module states and performance information, you may find in the register "General" facts about the hardware

version (also part releases) and the version of the firmware:

|                     | Module Information                                                                                       | on - CPU 315-2 DP ONLINE                       |                       |                    |
|---------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|--------------------|
|                     | Path: [Participants online(MPI = 2 (direct) Uperating mode of the CPU: () STL<br>Status: Not a force job |                                                |                       | PU: 😈 STOP         |
|                     | Time System                                                                                              | Performance Data                               | Communication         | Stacks             |
|                     | General                                                                                                  | Diagnostic Buffer                              | Memory                | Scan Cycle Time    |
|                     | Description:                                                                                             | CPU 315-2 DP                                   | System Identifica     | ition: SIMATIC 300 |
|                     | ⊻ersion:                                                                                                 | Order No. / Description<br>6ES7 315-2AF01-0AB6 | Component<br>Hardware | Version            |
| Hardware<br>release |                                                                                                          | ADAM-8214-2BMD1 A1.2                           | Firmware              | V. 3.0             |
| Firmware<br>release | Rack:                                                                                                    |                                                | Address:              |                    |
|                     | Slot:                                                                                                    |                                                | Module Width:         |                    |
|                     |                                                                                                          |                                                |                       |                    |
|                     | Status:                                                                                                  |                                                |                       |                    |
|                     | _                                                                                                        |                                                |                       |                    |
|                     |                                                                                                          |                                                |                       |                    |
|                     |                                                                                                          |                                                |                       |                    |
|                     |                                                                                                          |                                                |                       |                    |
|                     |                                                                                                          | pdatePrint                                     |                       | Help               |

1

### Note!

More detailed information to the deployment of the PLC functions are to find in the manual to the STEP<sup>®</sup>7 manager from Siemens.

### Using test functions for the control and monitoring of variables

OutlineFor troubleshooting purposes and to display the status of certain variables<br/>you may access certain test functions via the menu item Test of the<br/>Siemens STEP®7 manager.<br/>The status of the operands and the VKE are displayed by means of the test<br/>function Test > Status.

You are able to modify and/or display the status of variables by means of the test function **PLC** > *Monitor/control variables*.

Test > StatusThis test function displays the current signal state and the VKE of the<br/>different operands while the program is being executed.<br/>It is also possible to enter corrections to the program.

Note!

When using the test function *Monitoring* the PLC has to be in RUN mode!

The processing of states may be interrupted by means of jump commands or by timer and process-related alarms. At the breakpoint the CPU stops collecting data for the status display and instead of the required data it only provides the PU with data containing the value 0.

For this reason jumps or time and process alarms may result in the value displayed during program execution remaining at 0 for the items below:

- the result of the logical operation VKE
- Status / AKKU 1
- AKKU 2
- Condition byte
- absolute memory address SAZ. In this case SAZ is followed by a "?".

The interruption of the processing of statuses does not change the execution of the program but it only shows that the data displayed is no longer valid after from the point where the interrupt occurred.

PLC > Monitor/control variables This test function returns the condition of a selected operand (inputs, outputs, flags, data word, counters or timer) at the end of program execution.

This information is obtained from the process image of the selected operands. During the "processing check" or in operating mode STOP the periphery is read directly from the inputs. Otherwise only the process image of the selected operands is displayed.

#### Control of outputs

It is possible to check the wiring and proper operation of output modules.

You may set outputs to any desired status with or without a control program. The process image is not modified but outputs are no longer inhibited.

#### Control of variables

The following variables may be modified:

E, A, M, T, Z, and D.

The process image of binary and digital operands is modified independently of the operating mode of the CPU 821x.

When the operating mode is RUN the program is executed with the modified process variable. When the program continues they may, however, be modified again without notification.

Process variables are controlled asynchronously with respect to the execution sequence of the program.

### Chapter 4 Deployment of the CPU 821xNET

#### Outline

The following chapter describes applications of the CPU 821xNET and the H1 resp. TCP/IP communication procedure. It also contains an introduction to the configuration of the module by means of WinNCS along with a real-world example.

The chapter contains a description of:

- the principles of the twisted-pair network
- configuration by means of WinNCS along with an example
- a test program for TCP/IP connections

| Contents | Торіс                                   | Page |
|----------|-----------------------------------------|------|
|          | Chapter 4 Deployment of the CPU 821xNET | 4-1  |
|          | Principles                              |      |
|          | Network planning                        |      |
|          | Standards and norms                     |      |
|          | Ethernet and IP addresses               | 4-10 |
|          | Configuration of the CPU 821xNET        | 4-12 |
|          | Configuration examples                  | 4-17 |
|          | Start-up behavior                       |      |
|          | System properties of the CPU 821xNET    | 4-29 |
|          | Communication links to foreign systems  | 4-31 |
|          | Test program for TCP/IP connections     | 4-34 |

### **Principles**

**Network** A network provides a link between different stations that enables them to communicate with each other.

Network stations consist of PCs, IPCs, H1/TCP/IP adapters, etc.

Network stations are separated by a minimum distance and connected by means of a network cable. The combination of network stations and the network cable represent a complete segment.

All the segments of a network form the Ethernet (physics of a network).

Twisted PairIn the early days of networking the Triaxial- (yellow cable) or thin Ethernet<br/>cable (Cheapernet) was used as communication medium. This has been<br/>superseded by the twisted-pair network cable due to its immunity to<br/>interference. The CPU 821xNET module has a twisted-pair connector.

The twisted-pair cable consists of 4 cores that are twisted together in pairs. Due to these twists this system is provides an increased level of immunity to electrical interference.

Where the coaxial Ethernet networks are based on a bus topology the twisted-pair network is based on a point-to-point scheme.

The network that may be established by means of this cable has a star topology. Every station is connected to the star coupler (hub/switch) by means of a separate cable. The hub/switch provides the interface to the Ethernet.

Star couplerThe hub is the central element that is required to implement a twisted-pair(Hub)Ethernet network.

It is the job of the hub to regenerate and to amplify the signals in both directions. At the same time it must have the facility to detect and process segment wide collisions and to relay this information. The hub is not accessible by means of a separate network address since it is not visible to the stations on the network.

A hub has provisions to interface to Ethernet or to another hub.

Access control Ethernet supports the principle of random bus accesses: every station on the network accesses the bus independently as and when required. These accesses are coordinated by a CSMA/CD (Carrier Sense Multiple Access/Collision Detection) scheme: every station "listens" on the bus cable and receives communication messages that are addressed to it.

Stations will only initiate a transmission when the line is unoccupied. In the event that two participants should start transmitting simultaneously, they will detect this and stop transmitting to restart after a random delay time has expired.

**Communication** The internal CP of the CPU 821xNET is directly connected to the CPU 821x by means of a Dual-Port-RAM. The Dual-Port-RAM is divided into 4 equal segments called page frames.

These 4 page frames are available at the CPU as standard CP interface. Data is exchanged by means of standard handler blocks (SEND and RECEIVE).

H1 and TCP/IP communication is controlled by means of connections that are defined with the ADAM configuration tool WinNCS and are directly transferred into the CPU via the twisted-pair connection.



H1 - IndustrialH1, which is also referred to as "Industrial Ethernet", is a protocol that is<br/>based upon the Ethernet standard.

H1 information is exchanged between stations by means of H1-frames that are transferred via transport connections.

A transport connection is a logical link between two access points to the transport services on different stations. A transport connection is based upon addressing information that provides an exact description of the path between the two access points.

The following parameters describe a transport connection individually:

- *MAC address,* also referred to as Ethernet address, gives an unique definition of the access facility of a station.
- *TSAP Transport Service Access Points* identify access channels for the services of the transport protocol.

The CP prepares a data buffer and transfers the data into the data buffer by means of the background communication function SEND\_ALL. Then the CP creates an H1-frame and transfers this to the partner station as soon as this has enabled reception. When the partner station has received the H1-frames, the CP receives an acknowledgment receipt. Next it uses the background communication function RECEIVE\_ALL to transfer the status of the SEND-job into the respective indicator word.

This ensures error-free communications.

The following illustration shows the principle once again:





#### Note!

Due to the large quantity of acknowledgment receipts that are transferred via an H1 transport connection, the load on the network is appreciably higher under H1 than under TCP/IP, however, under TCP/IP the security of the data is reduced!

**TCP/IP** TCP/IP protocols are available on all major systems. At the bottom end this applies to simple PCs, through to the typical mini computer up to main-frames (TCP/IP implementations also exist for IBM systems) and special processors like vector processors and parallel computers. For this reason TCP/IP is often used to assemble heterogeneous system pools.

TCP/IP can be employed to establish extensive open network solutions between the different business units of an enterprise.

For example, TCP/IP may be used for the following applications:

- centralized control and supervision of production plants,
- transfer of the state of production machines,
- management information,
- production statistics,
- the transfer of large quantities of data.

TCP and IP only provide support for two of the protocols required for a complete architecture. Programs like "FTP" and "Telnet" are available for the application layer of the PC.

The application layer of the CPU 821xNET-CP is defined by the application program using the standard handler blocks.

These application programs exchange data by means of the TCP or UDP protocols of the transportation layer. These themselves communicate with the IP protocol of the Internet layer.

#### IP

The main purpose of IP is to provide the addressing of data packets. This means that IP has the same function as an envelope has for a letter. The address is used by the network to determine the destination and to route the data packets accordingly.

The protocol divides the data into small portions since different networks use differently sized data packets.

A number is assigned to each packet. This is used to acknowledge reception and to reassemble the original data. To transfer these sequence numbers via the network TCP and IP is provided with a unique envelope where these numbers are recorded.

#### ТСР

A packet of data is inserted into a TCP envelope. This is then inserted into an IP-envelope and transferred to the network. TCP provides for the secure transfer of data via network. TCP detects and corrects communication errors.

In this way TCP connections are relatively safe.

UDP provides a much faster communication link. However, it does not cater for missing data packets, nor does it check the sequence of the packets. UDP is an unsecured protocol.

TCP/IP services OPEN / CONNECT

Opens a virtual connection to communication partner when the station is in active mode and waits for a connection from a communication partner in passive mode.

#### SEND

Transfers a data buffer to TCP for transmission to a communication partner.

#### RECEIVE

Receives data from a communication partner.

CLOSE

Terminates a virtual connection.

### Example for H1 or TCP/IP application

Deployment under TCP/IP or H1



### **Network planning**

Twisted-pair network hardware A twisted-pair network can only be constructed as star topology. This requires a hub to connect the different stations.

A twisted-pair cable has four cores, twisted together in pairs. The different cores have a diameter of 0.4 to 0.6 mm.



**Restrictions** There are a few restrictions and rules that have to be taken into account using twisted-pair:

- Maximum number of hub elements per segment
- 100m

2

• Maximum length of one segment



#### Analyzing the network requirements

- What is the size of the area that has to be served by the network?
- How many network segments provide the best solution for the physical (space, interference related) conditions encountered on site?
- How many network stations (PLCs, IPCs, PCs, transceivers, bridges, if required) shall be connected to the cable?
- What is the distance between the different stations on the network?
- What is the expected "growth rate" and the expected number of connections that shall be catered for by the system?

Drawing a<br/>network diagramDraw a diagram of the network. Identify every hardware item (i.e. station<br/>cable, hub). Observe the applicable rules and restrictions.<br/>Measure the distance between all components to ensure that the maximum<br/>length is not exceeded.

### Standards and norms

The main property of the bus structure is that there is only one single physical connection. The physical communication medium may be:

- one or more electrical cables (drilled cores),
- coaxial cables (triaxial cables),
- fiber optic cables.

The applicable rules and regulations have to be satisfied in order to establish reliable communications between the different stations.

These agreements define the form of the data protocol, the method of bus access and other principles that are important for reliable communications.

The ADAM CPU 821xNET was developed in accordance with the standards defined by ISO.

**Standards and** International and national committees have defined the following standards and guidelines for networking technologies:

- ANSI American National Standards Institute The ANSI X3T9.5 standard currently defines the provisions for high-speed LANs (100 MB/s) based on fiber optic technology. (FDDI) Fiber Distributed Data Interface.
- CCITT Committee Consultative Internationale de Telephone et Telegraph. Amongst others, this advisory committee has produced the provisions for the connection of industrial networks (MAP) to office networks (TOP) on Wide Area Networks (WAN).
- ECMA European Computer Manufacturers Association. Has produced various MAP and TOP standards.
- EIA Electrical Industries Association (USA) This committee has issued standard definitions like RS-232 (V.24) and RS-511.
- IEC International Electrotechnical Commission. Defines certain special standards, e.g. for the Field Bus. ISO International Organization for Standardization.

This association of national standards organizations developed the OSImodel (ISO/TC97/SC16). It provides the framework for the standardization of data communications. ISO standards are included in different national standards like for example UL and DIN.

IEEE Institute of Electrical and Electronic Engineers (USA). The project-group 802 determines LAN-standards for transfer rates of 1 to 20 MB/s. IEEE standards often form the basis for ISO-standards, e.g. IEEE 802.3 = ISO 8802.3.
### Ethernet and IP addresses

**Structure of an Ethernet address** A station is addressed by means of the Ethernet address, which is also known as the MAC address. The Ethernet addresses of stations in a network must be unique.

Ethernet addresses consist of the following elements:



The Ethernet address has a length of 6Byte. The first 3Byte are defined by the manufacturer. These 3Byte are assigned by the IEEE-Committee. The last 3Byte may be defined as required.

The network administrator determines the Ethernet address.

The broadcast address (to transmit messages to all stations on the network) always is: FFFFFFFFFFFFFF

IP addressThe IP address is a 32Bit address that must be unique within the network.structureThe IP address consists of 4 numbers that are separated by a dot.

The structure of an IP address is as follows: XXX.XXX.XXX.XXX

Range: 000.000.000.000 to 255.255.255.255

The network administrator also defines IP addresses.

The broadcast address (transmit a message to all stations) is always: 255.255.255.255



#### Attention!

Certain IP addresses are restricted! These addresses are reserved for special services!

**Initial address** When the CPU 824xNET is first turned on the module has a predefined initial Ethernet address.

This address is available from the label that has been attached to the side of the module.

This Ethernet address is only used when the module is first turned on, to calculate a unique IP address according to the following formula:





#### Note!

A relationship between the Ethernet address and the IP address only exists when the module is turned on for the first time.

You may always use the function CP-Init in WinNCS to assign a different address.



#### Attention!

The original Ethernet address may not be restored since it is not possible to perform an overall reset of the CP section.

### Configuration of the CPU 821xNET

| Outline                         | <ul> <li>The configuration procedure for the CP section is identical to that of the CP 143 H1/TCP/IP ADAM module.</li> <li>The configuration procedure for H1 and TCP/IP consists of two parts:</li> <li>CP configuration by means of WinNCS of Advantech (Ethernet connection).</li> <li>PLC programming by means of an application program (PLC connect).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CP-configuration<br>with WinNCS | <ul> <li>The CP section of the CPU 821xNET may only be configured with WinNCS from Advantech and consists of the following 3 parts:</li> <li>The initial CP configuration,</li> <li>configuration of connection modules,</li> <li>transfer configuration data into the CP.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Initial CP<br>configuration     | This is where the address and other identification parameters of a station are defined.<br>Under "Ethernet" you insert a new station into the network window and enter the configuration data for your station into the parameter window.<br>Parameter<br>Parameter<br>Parameter-H1 Parameter-IP Syskonfig<br>Date: 14.07.00 Version: V1.0<br>Station name: Station 1<br>Page frame address: 0 Page frame number: 1<br>Station address: 0020d5000001<br>P-Address: 213.128.054.001<br>Sugnet-Mask: 255.255.000.000<br>Router 1: 000.000.000<br>Router 2: 000.000.000<br>Router 3: 000.000.000<br>Control Control Co |

<u>C</u>ancel

Apply

The basic CP configuration determines the behavior of your station on the network.

Help

## Configuration of a connection block

A connection block contains the remote parameters, i.e. parameters that are oriented towards the partner on the network, and local parameters, i.e. parameters that apply to the PLC program of a connection.

Depending on the selected protocol you may configure H1 or TCP/IP connections by selecting the symbol of the station and inserting/configuring the respective connection.

| H1-Connection                                             |                           | TCP/IP- Connection                                                                                      |
|-----------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|
| Parameter                                                 |                           | Parameter                                                                                               |
| H1-Iransport connection                                   | nnection System parameter | ICP connection Multiconnection System parameter                                                         |
| Connection name : Transpo                                 | ort                       | Connection name: Tcp                                                                                    |
| Page frame offset : 0<br>Order number : 1<br>Priority : 2 | Order type:               | Order type:<br>Page frame offset : 0 Send<br>Order number : 5 Order model:<br>Priority : 2 Single order |
| Local TSAP                                                | Foreign TSAP              | Local station : Foreign station :                                                                       |
| Asc : nordpol                                             | As <u>c</u> : südpol      | Port : 1002 Port : 1004                                                                                 |
| Length: 8                                                 | Length: 8                 | IP-Address<br>213.128.000.000 ▼                                                                         |
| Hex: 6E6F7264706F6C                                       | Hex: 73FC64706F6C         | Host-name<br>Fördereinheit                                                                              |
|                                                           | Address: 0020D5000000     | <u>Attempt</u>                                                                                          |
| <u>Apply</u>                                              | cel Help                  | Apply Cancel Help                                                                                       |

# Transferring the configuration to the CP

When all the required connections have been configured, you have to transfer the parameters to the CP. This operation is available from the "Module transfer functions" of WinNCS.

For transferring the configuration data, please activate the "online functions" and click on the button INIT:



Like described before the CPU 821xNET is delivered with a predefined Ethernet address.

You will find this predefined address on the label at the side of the module.

When using the module for the first time this default address is changed into an individual IP address following this rules:



Choose "IP protocol" in the *Protocol*-window and type the determined IP address. Confirm your entry with [OK].

Now switch to the window *network* and click the according station. Use the right mouse button and choose "Download".

Your project will now be directly transferred into the Flash-ROM of your CP.



PLC application<br/>programmingTo enable the PLC to process connect requests, it requires an active PLC<br/>application program on the CPU. This uses the handler blocks (SEND,<br/>RECEIVE, ...) that are included in the CPU 821xNET amongst others.<br/>The PLC-program also requires that a communication channel be specified<br/>first between the CPU and the CP ("synchronization"). This function is<br/>performed by the SYNCHRON block.<br/>Transmission and reception is initiated by means of SEND and RECEIVE.<br/>A data transfer is initiated by means of SEND\_ALL resp. RECEIVE\_ALL.<br/>Error messages will appear in the indicator word.<br/>A description of the handler blocks is available in this manual in the chapter

**Handler blocks** The following table lists the respective handler blocks:

on "Integrated handler blocks".

| Handler block |                | Description                                           |
|---------------|----------------|-------------------------------------------------------|
| SEND          | SFC230         | Transmit a job from the CPU to the CP.                |
| SEND_ALL      | SFC236         | Initiate a file transfer between the CPU and the CP.  |
| RECEIVE       | SFC231         | Reception of an order from the CP.                    |
| RECEIVE_ALL   | SFC237         | Initiate a file transfer between the CPU and the CP.  |
| FETCH         | SFC232         | The FETCH block requests data. FETCH initiates a      |
|               |                | RECEIVE_ALL.                                          |
| CONTROL       | SFC233         | The CONTROL block is used for a job-related status    |
|               |                | request, i.e. the ANZW of a specific job is updated.  |
| CONTROL_ALL   | SFC233 + ANR=0 | Request for the present job                           |
| RESET         | SFC234         | The RESET block initiates a reset of the job for the  |
|               |                | specified connection.                                 |
| RESET_ALL     | SFC234 + ANR=0 | RESET_ALL forces a full system reset of the CP.       |
| SYNCHRON      | SFC235         | During start-up, SYNCHRON provides the synchroniza-   |
|               |                | tion between CPU and CP. At the same time the page    |
|               |                | frame is erased and the block size between PLC and    |
|               |                | CP is negotiated. Active data communications may only |
|               |                | occur via synchronized page frames.                   |

**Synchronization** When a PLC starts-up, each of the configured interfaces of the CP has to be synchronized by means of SYNCHRON.

After power is turned on, the CPU 821xNET requires app. 15s for the bootprocedure. If the PLC should issue a request for synchronization during this time, an error is returned in the configuration error byte PAFE. This message is removed when the CP module has completed the boot process.

The timer in this block is initially set to 20s. Processing will be stopped if the synchronization is not completed properly within this period.

The following table shows the available block sizes.

| Block size | CP block size in byte     |
|------------|---------------------------|
| 0          | Use the preset block size |
| 1          | 16                        |
| 2          | 32                        |
| 3          | 64                        |
| 4          | 128                       |
| 5          | 256                       |
| 6          | 512                       |
| 255        | 512                       |

**Cycle** The sending and receiving blocks SEND and RECEIVE, which initiate the sending and receiving operations, must be configured in the cycle program OB1. The blocks SEND\_ALL and RECEIVE\_ALL perform the actual data-transfer.

Purely passive connections only require the components SEND\_ALL or RECEIVE\_ALL.

To protect the data transfer you should integrate various checkpoints that evaluate the indicator word.

### **Configuration examples**

**Outline and requirements** This chapter provides an introduction to use the bus systems H1 and TCP/IP for the System 82xx. This introduction is centered on the Advantech configuration software WinNCS.

The object of this chapter is to create a small communication system between two ADAM CPU 821xNET that provides a simple approach to the control of the communication processes.

Knowledge of the CP handler blocks is required. CP handler blocks are standard function blocks. These provide the options required to use the communication functions in the applications of the programmable logic controllers.

The minimum technical equipment required for the examples is as follows:

#### Hardware

- 2 CPU 821xNET,
- 1 PC or PU with twisted-pair Ethernet connection

#### Communication line

- 3 bus cables
- 1 hub

#### Software package

- Configuration software WinNCS from Advantech
- Siemens STEP<sup>®</sup>7 Manager programming package for CPU 821xNET

The implementation of the example is to program the two programmable logic controllers as well as configuring the communication processors by means of WinNCS.

Task

Structure

The introductory example is the application of a communication task, described below:



Purpose of the<br/>PLCsBoth of the CPUs run with the same PLC program, only the configuration of<br/>the CPs have to be adjusted.

Both stations are sending and receiving 16 data words per second.

- Data block DB11 transfers the data words DW0 to DW15 at an interval of 1s. Data word DW0 in DB11 is used as message counter. It is only incremented, if the preceding send command was processed correctly (completed without error). The remaining data words (DW1 to DW15) may be used for the transfer of user data.
- The receiving station stores the data in DB12 (DW 1 to DW 15).
- SEND is configured with job number A-No. = 11 and with a page frame offset SSNR = 0.
- RECEIVE is configured with job number A-No. = 1 and a page frame offset SSNR = 0.
- The source and destination parameters have to be configured directly.

At this point the purpose and the required settings have been outlined. The programs provide additional details of the configuration of the handler blocks. A detailed description of a suitable configuration of the CPs under control of H1 or TCP/IP is also included.

**Configuration under WinNCS** The two CPs are configured exclusively by means of WinNCS. Start WinNCS and create a project containing the function group "Ethernet\_H1". The procedure is the same for both stations. It differs only in the parameters that have to be defined and is divided into the following 3 parts:

- Basic CP configuration,
- Configuration of connection blocks,
- Transfer of configuration data into the CP.

Basic CP configuration

Insert two stations and select the following settings:

| Station 1                                              | Station 2                                              |
|--------------------------------------------------------|--------------------------------------------------------|
| Parameter                                              | Parameter                                              |
| CP-Init Clock-Init Parameter-H1 Parameter-IP Syskonfig | CP-Init Clock-Init Parameter-H1 Parameter-IP Syskonfig |
| Date: 14.07.00 ⊻ersion: V1.0                           | Date: 14.07.00 ⊻ersion: V1.0                           |
| Station name : Station 1                               | Station name : Station 2                               |
| Page frame address: 0 Page frame number: 1             | Page frame address: 0 Page frame number: 1             |
| Station address: 0020d5000001                          | Station address: 0020d5000002                          |
| P-Address: 213.128.054.001                             | [P-Address: 213.128.054.002                            |
| Subnet-Mask: 255.255.000.000                           | Subnet-Mask: 255.255.000.000                           |
| Router1: 000.000.000 💌                                 | Router1 : 000.000.000                                  |
| Router2: 000.000.000 V                                 | Router2: 000.000.000 -                                 |
| Rogter3: 000.000.000 V                                 | Router3: 000.000.000 💌                                 |
|                                                        |                                                        |
| Apply Cancel Help                                      | Apply Cancel Help                                      |

Request the required station addresses from your system administrator. If necessary, you may enter additional settings into the configuration windows. Details are obtainable from your system administrator.

#### Connection block configuration

**H1 connections** You configure your H1 connection by inserting an H1 transport connection below the stations by means of and entering the following parameters for the stations:

| Station 1                                                                                            | Station 2                                                                                            |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Parameter                                                                                            | Parameter                                                                                            |
| H1-Iransport connection Multiconnection System parameter                                             | H1-Iransport connection Multiconnection System parameter                                             |
| Connection name : SEND to Station 2                                                                  | Connection name : RECEIVE from Station 1                                                             |
| Order type:<br>Page frame offset : 0 Send •<br>Order number : 11<br>Priority : 2                     | Order type:<br>Page frame offset : 0 Receive<br>Order number : 12<br>Priority : 2                    |
| Local TSAP Foreign TSAP                                                                              | Local TSAP Foreign TSAP                                                                              |
| Asc:         send         Asc:         receive           Length:         8         Length:         8 | Asc:         receive         Asc:         send           Length:         8         Length:         8 |
| Hex: 73656E64 Hex: 72656365697665                                                                    | Hex: 72656365697665 Hex: 73656664                                                                    |
| A <u>d</u> dress : 002005000002                                                                      | Address : 002005000001                                                                               |
| Apply Cancel Help                                                                                    | Apply Cancel Help                                                                                    |



TCP/IP connections You configure your TCP/IP connection by inserting a TCP connection below the stations by means of and entering the following parameters for the stations:

Station 2

#### TCP/IP connections

#### Station 1

| Parameter                                                                                     | Parameter                                                                             |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| ICP connection Multiconnection System parameter                                               | ICP connection                                                                        |
| Connection name: SEND to Station 1                                                            | Connection name: RECEIVE from Station 1                                               |
| Order type: Page frame offset: O Send  Order number: 11 Order modet: Priority: 2 Single order | Order type: Page frame offset: Order number: 12 Order model: Priority: 2 Single order |
| Local station : Foreign station :                                                             | Local station : Foreign station :                                                     |
| Port: 1100 Port: 1200<br>IP-Address<br>✓ 213.128.054.002 ▼<br>Host-name<br>                   | Port: 1200 Port: 1100<br>IP-Address<br>✓ 213.128.054.001 ▼<br>Host-name<br>Attempt 0  |
| Apply Cancel Help                                                                             | Apply Cancel Help                                                                     |

| Parameter               |                      | Parameter           |           |                       |             |
|-------------------------|----------------------|---------------------|-----------|-----------------------|-------------|
| ICP connection          | System parameter     |                     | onnection | System parameter      | 1           |
| Connection name: RECEIV | E from Station 2     | Connection name:    | SEND to   | ) Station 1           |             |
|                         | Ord <u>e</u> r type: |                     |           | Order type:           |             |
| Page frame offset : 0   | Receive              | Page frame offset : | 0         | Send                  | •           |
| Order number : 11       | Order model:         | Order number :      | 1         | O <u>r</u> der model: |             |
| Priority : 2            | Single order         | Priority :          | 2         | Single order          | -           |
| Local station :         | Foreign station :    | Local station :     |           | Foreign stat          | ion :       |
| Port : 3001             | Port : 0             | Port :              | 0         | Port :                | 3001        |
|                         |                      |                     |           |                       |             |
|                         |                      |                     |           |                       |             |
|                         | P-Addr. 0.0.0.0      |                     |           | P-Addr. 172.16        | 5.129.148 💌 |
|                         | Host-name            |                     |           | Host-name             |             |
|                         | Atternet             |                     |           | 0.000                 |             |
|                         |                      |                     |           | Arrempt               | 0           |
| Apply Can               | cel Help             | ViqqA               | Cano      |                       | Help        |
|                         |                      |                     |           |                       |             |

Please save your project!

**Network window** Your network window should have the following contents:



#### Transferring the configuration data into the CPUs

You can transfer your configuration online via the network into the respective CPUs. Create the system structure as shown above and start both CPUs.

For the data transfer please activate the online functions and click on the button INIT:



Now choose "IP-protocol" in the *Protocol* window and type the according IP address. Confirm with [OK].

Select the station to which you wish to transfer the configuration data in the *network* window of WinNCS and activate [Download].

Your project will now be transferred to the RAM of the CPU.





#### Attention!

After transferring the project into the CPU-RAM you should save the project additionally in the Flash-ROM. Otherwise the data will get lost at power off.

Therefore you are searching the according station in the *network* window. Click on the right mouse button and choose "Flash".

The RAM data are now transferred to the Flash-ROM.



Repeat this procedure above for station 2 and don't forget to save the project to Flash-ROM.

This concludes the configuration of the CP side. The following pages contain information on the programming for the PLC section.

| PLC programs<br>for the CPUs | The PLC programming in this example does not depend on the protocol and can therefore be used for H1 and TCP/IP. |
|------------------------------|------------------------------------------------------------------------------------------------------------------|
|                              | This PLC program is used in both CPUs.                                                                           |

OB100Synchronization of the interfacesInterfaceIn the start-up OB OB100 of the CPU the interface used on the CP has to<br/>be synchronized by means of the handler block SYNCHRON.OB100 verifies that the synchronization procedure was completed without

errors. If an error is detected, the error number is entered into MW100.

Operation block OB100:

| OB100 : "Complete Restart" |                                  |                               |             |                                                                                                    |  |
|----------------------------|----------------------------------|-------------------------------|-------------|----------------------------------------------------------------------------------------------------|--|
| Commen                     | Commentary:<br>Metwork 1: Title: |                               |             |                                                                                                    |  |
| Networ                     |                                  |                               |             |                                                                                                    |  |
| Commentary:                |                                  |                               |             |                                                                                                    |  |
|                            | L<br>CLR                         | S5T#2                         | 205         | // Timer 20sec<br>// VKE 0                                                                         |  |
|                            | SV<br>SET<br>SV                  | т                             | 1           | // VKE 1<br>// Timer Start                                                                         |  |
| loop:                      | CALL<br>SSNR<br>BLGR<br>PAFE     | "Sync<br>:=0<br>:=6<br>:=MB20 | -<br>chron" | // CP synchron<br>// Interface number<br>// Block size 6 : 512 byte<br>// Configuration error byte |  |
|                            | UN<br>BEB<br>U<br>SPB            | M<br>T<br>loop                | 200.0<br>1  | // no error - ready<br>// Timer running<br>// recall synchron                                      |  |

OB1 - Cycle FC 1 - SEND FC 2 - RECEIVE The OB1 cycle controls the sending and receiving of the data. The initiation of transmission in station 1 is issued by a SEND handler block called in FC1. The partner station answers with RECEIVE (FC2). By means of SEND\_ALL the data will be send and received by the partner with the command RECEIVE ALL.

#### Cycle operation block OB1:

| OBI · Cwcle                    |                                     |
|--------------------------------|-------------------------------------|
|                                |                                     |
| Send-All, Rec-All, Applikation |                                     |
|                                |                                     |
| Network 1: All Function        |                                     |
| Send- und Rec-All              |                                     |
|                                |                                     |
| CALL "Receive_All"             | // takes data at CP                 |
| SSNR:=0                        | // is also used write passiv        |
| PAFE:=MB196                    | // Parametrization error byte MB196 |
| ANZW:=MD180                    | // Indication word:                 |
| //                             | showes the working order number     |
| CALL "Send All"                | // send data at CP                  |
| SSNR:=0                        | // is also used from Fetch passiv   |
| PAFE:=MB197                    | // Parametrization error byte       |
| ANZW:=MD184                    | // Indication word:                 |
| 11                             | showes the working order number     |
| Wetherself Or Title            |                                     |
| Network 2: litte               |                                     |
| SEND                           |                                     |
|                                |                                     |
| CALL FC 1                      | // Function call 1: sending         |
|                                |                                     |
|                                |                                     |
| We have a loss mit his         |                                     |
| Network 3: Title               |                                     |
| RECEIVE                        |                                     |
|                                |                                     |
| CALL FC 2                      | // Function cell 2: receive         |
| 5.111 I C 2                    | ,, Tancolon Call 2. LECEIVE         |

#### FC1 - SEND

| Send function         Network 1 : Title         Time control sending         CALL "Control"       //Control send         SSNR:=0       //Interface number 0         AND:=1       //Order number 1         PATE:=HE195       //Parametrization error HB195         ANDU:=HD174       //Interface number 0         0       M 175.1         0       T         0       T         0       T         0       T         0       T         0       T         0       T         0       T         0       T         1       //Timer runs         BEB       //end         2       SST#1         1       // the 1         SV       T         SSR:=0       // the1 send         SSNR:=0       // Interface number 0         ANR :=1       // Order number 1         IND<:=0       // Data : dbll,dw0, 16 byte         PATE:=HB196       // Parametrization error MB 196         ANWF:=P\$0B11.DEX 0.0 BYTE 16       // Data : dbll,dw0, 16 byte         PATE:=HB196       // Haicator word HD 174         L       DB11.DEW 0    | FCl : Send                                                                                                |                   |                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Network 1 : Title         Time control sending         CALL "Control"       //Control send         SSBR:=0       //Interface number 0         ANR :=1       //Order number 1         PAFE:=HE195       //Parametriation error NB195         ANZW:=HD174       //Indication word MD174         0       M         0       T         1       //Interface number         0       T         0       T         1       //Inter runs         EEB       //end         L       SST#13         CLR       // vke 0         Sy T       1         SET       // vke 1         ST       // Interface number 0         ANR :=1       // Order number 1         IND :=0       // Interface number 0         ANR :=1       // Order number 1         IND :=0       // Indirect configuration         OAMF:=F#DB1L.DEX 0.0 BYTE 16       // Data : db11, dw0, 16 byte         PATE:=HE196       // Parametrization error MB 196         AUXU:=HD174       // Indicator word MD 174         L       DB11.DEW 0       // Message counter | Send function                                                                                             |                   |                                                                                                                                                                                                          |
| Time control sending         CALL "Control"       //control send         SSBR:=0       //Interface number 0         ANR :=1       //Drder number 1         PAFE:=ME195       //Parametrization error ME195         ANZU:=MD174       //Indication word MD174         0       M         0       T         0       T         0       T         0       T         0       T         0       T         0       T         0       T         0       T         0       T         0       T         1       //Interface number         0       T         1       //Interface number         0       T         1       //Vake 0         SV       T         SWT       1         SV       T         1       //Vake 0         SV       T         1       // Interface number 0         ANR:=1       // Order number 1         IND<:=0       // Interface number 0         ANR::=1       // Order number 1         IND :=0       // Data :                                                                                      | Network 1 : Titl                                                                                          | le                |                                                                                                                                                                                                          |
| CALL "Control"       //control send         SSNR:=0       //Interface number 0         ANR:=1       //Interface number 0         PATE:=HE195       //Parametrization error NE195         ANZW:=HD174       //Indication word MD174         0       M 175.1         0       T         0       T         0       T         0       T         0       T         0       T         0       T         0       T         //Timer runs         DEB       //read         L       SST#15         //V tke 0         SV       T         SW       T         SW       T         SW       T         MRN:=0       // Interface number 0         ANR:=1       // Otder number 1         IND :=0       // Indirect configuration         OBART:=HE196       // Parametrization error ME 196         ANZW:=HD174       // Indirect voor MD 174         L       DB11.DEW       0                                                                                                                                                       | Time control ser                                                                                          | nding             |                                                                                                                                                                                                          |
| 0         M         175.1         //Job runs           0         T         1         //Timer runs           BEB         //end         //end           L         SST#IS         // Timer 1 sec           CLR         // vkc 0         // vkc 1           ST         1         // Timer tase           ST         1         // Timer tase           ST         1         // Timer tase           SW         T         1         // Call send           SSW:=0         // Interface number 0         ANR :=1           JND :=0         // Indirect configuration           QAMF:=P#DB11.DEX 0.0 BYTE 16         // Data : db11, dw0, 16 byte           PATE:=HE196         // Indicator word HD 174           L         DB11.DEW         0         // Message counter                                                                                                                                                                                                                                                  | CALL "Con<br>SSNR:=0<br>ANR :=1<br>PAFE:=MB1<br>ANZW:=MD1                                                 | trol"<br>95<br>74 | //control send<br>//Interface number 0<br>//Order number 1<br>//Parametrization error ME195<br>//Indication word MD174                                                                                   |
| L SST#13 // Timer 1 sec<br>CLR // vke 0<br>SV T 1<br>SET // vke 1<br>SET // vke 1<br>SV T 1 // Timer start<br>CALL "Send" // call send<br>SSNR:=0 // Interface number 0<br>ANR :=1 // Order number 1<br>IND :=0 // Indirect configuration<br>OAMF:=F#DB1L.DEX 0.0 BYTE 16 // Data : db11, dw0, 16 byte<br>PAFE:=HE196 // Parametrization error HE 196<br>ANZW:=HD174 // Indicator word HD 174<br>L DB11.DEW 0 // Message counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 M<br>0 T<br>BEB                                                                                         | 175.1<br>1        | //Job runs<br>//Timer runs<br>//end                                                                                                                                                                      |
| SAI // UNE 1<br>SV T 1 // Timer start<br>CALL "Send" // call send<br>SSMR:=0 // Interface number 0<br>ANR :=1 // Order number 1<br>IND :=0 // Indirect configuration<br>QAMF:=#PDB11.DEX 0.0 BYTE 16 // Pata =: dhll, dw0, 16 byte<br>PAFE:=MB196 // Pata =: dhll, dw0, 16 byte<br>PAFE:=MB196 // Pata =: dhll, dw0, 16 byte<br>ANZW:=MD174 // Indicator word MD 174<br>L DB11.DEW 0 // Message counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L S5T#<br>CLR<br>SV T                                                                                     | 15                | // Timer 1 sec<br>// vke 0                                                                                                                                                                               |
| CALL "Send" // call send<br>SSNR:=0 // Interface number 0<br>ANR :=1 // Order number 1<br>IND :=0 // Indirect configuration<br>QANF:=FWB19611.DEX 0.0 EVTE 6 // Patasetrization error MB 196<br>ANZW:=HD174 // Indicator word MD 174<br>L DB11.DEW 0 // Message counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SV T                                                                                                      | 1                 | // VKe 1<br>// Timer start                                                                                                                                                                               |
| L DB11.DBW 0 // Message counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CALL "Send"<br>SSNR:=0<br>ANR:=1<br>IND :=0<br>QANR:=F#DB11.DEX 0.0 BYTE 16<br>PAFE:=MB196<br>ANZU:=MD174 |                   | <pre>// call send<br/>// Interface number 0<br/>// Order number 1<br/>// Indirect configuration<br/>// Data : dbll, dw0, 16 byte<br/>// Partametrization error MB 196<br/>// Indicator word MD 174</pre> |
| + 1 // DB11, DW0<br>T DB11.DBW 0 // increment message counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L DB11<br>+ 1<br>T DB11                                                                                   | .DBW 0<br>.DBW 0  | // Message counter<br>// DB11, DW0<br>// increment message counter                                                                                                                                       |

#### FC2 - RECEIVE

| FC2 : RECEIVE                                                                                                 |                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| RECEIVE funktion                                                                                              |                                                                                                                                                   |
| Network l : Title                                                                                             |                                                                                                                                                   |
| Cycle                                                                                                         |                                                                                                                                                   |
| CALL "Control"<br>SSNE:=0<br>ANR :=11<br>PAFE:=ME195<br>ANZW:=MD184<br>UN M 185.0<br>BEB                      | <pre>// SFC233 // Interface number 0 // Order number 11 // Partametrization error MB 195 // Indicator word MD 184 // if no handshake // end</pre> |
| CALL "Receive"<br>SSNR:=0<br>ANR :=11<br>IND :=0<br>ZANF:=F#DB12.DEX0.0 BYTE 16<br>PAFE:=ME195<br>ANZW:=MD184 | <pre>// SFC231 // Interface number 0 // Order number 11 // Indirect configuration // Parametrization error MB 195 // Indicator word MD 184</pre>  |
| L MB 188<br>+ 1<br>T MB 188                                                                                   | // Increment message counter                                                                                                                      |

Data blocksThe frequency with which a SEND job is issued, depends on the time that<br/>was configured for the FC1 call. This timer is programmed for 1000ms in<br/>this example. For this the sample program initiates the SEND job at a rate<br/>of once every 1000ms.

Data word DW0 in data block DB11 is incremented ahead of every SEND call that actually transmits a message. This occurs in function block FC1. Altogether 16Byte of data are transferred. The partner receives the information and stores it in DB12.

Together with DB0 there is still 15Byte space for user data.

DB11 and DB12 are identical in design:

| Address | N | lame   | Туре      | Startvalue | Comment |
|---------|---|--------|-----------|------------|---------|
| 0.0     |   |        | STRUCT    |            |         |
| +0.0    |   | STATO  | BYTE      | B#16#0     |         |
| +1.0    |   | STATI  | BYTE      | B#16#0     |         |
| +2.0    |   | STAT2  | BYTE      | B#16#0     |         |
| +3.0    |   | STAT3  | BYTE      | B#16#0     |         |
| +4.0    |   | STAT4  | BYTE      | B#16#0     |         |
| +5.0    |   | STAT5  | BYTE      | B#16#0     |         |
| +6.0    |   | STAT6  | BYTE      | B#16#0     |         |
| +7.0    |   | STAT7  | BYTE      | B#16#0     |         |
| +8.0    |   | STAT8  | BYTE      | B#16#0     |         |
| +9.0    |   | STAT9  | BYTE      | B#16#0     |         |
| +10.0   |   | STAT10 | BYTE      | B#16#0     |         |
| +11.0   |   | STAT11 | BYTE      | B#16#0     |         |
| +12.0   |   | STAT12 | BYTE      | B#16#0     |         |
| +13.0   |   | STAT13 | BYTE      | B#16#0     |         |
| +14.0   |   | STAT14 | BYTE      | B#16#0     |         |
| +15.0   |   | STAT15 | BYTE      | B#16#0     |         |
| +16.0   |   | STAT16 | BYTE      | B#16#0     |         |
| =18.0   |   |        | END_STRUC |            |         |

**Transfer project** The data transfer is realized via MPI. If your programming device has no MP-interface, you may also use the "Green Cable" (ADAM-8950-0KB00) from Advantech.

The "Green Cable" may only be used at the ADAM CPUs of the Systems 8xxx!

Please regard the notes about the "Green Cable" in chapter 1!

- Connect your PU with the CPU
- With **PLC** > Load to module in your configuration tool you transfer your project into the CPU.
- Insert a Multi Media Card (MMC) into the according CPU-slot and transfer your application via PLC > Copy RAM to ROM.
- During the writing process the MC-LED on the CPU is blinking. Due to the system the dialog message of the successful writing process appears a little bit too soon. This process is not ready before the LED on the CPU is extinguished.
- Switch both CPUs to RUN.

Monitoring the data transfer in Siemens STEP<sup>®</sup>7 manager It is assumed that the CPs were programmed and that an overall reset was issued to the CPUs where the RUN/STOP switch has to be in STOP position.

You now load the above PLC programs into your CPUs. Start the programs by placing the respective RUN/STOP switch into the position RUN.

At this point, communication between the modules is established. This is indicated by the COMM-LEDs.

Start the Siemens STEP<sup>®</sup>7 manager and execute the following steps to monitor the transmitting job:

- PLC > Monitor/Modify Value
- In the "Operand" column you enter the respective data block number and the data word (DB11.DW0-15).
- Establish a connection and click "Monitor"

| Monitoring and Modifying Variables - [Variable Table1] |                               |                   |                                                | _ 🗆 🗵 |
|--------------------------------------------------------|-------------------------------|-------------------|------------------------------------------------|-------|
| 🌃 <u>T</u> able <u>E</u> d                             | it <u>I</u> nsert <u>P</u> LC | Varia <u>b</u> le | <u>View Options</u> <u>Window</u> <u>H</u> elp | _ 8 × |
|                                                        | <b>8</b> X P                  | n 🔁 🔊             |                                                |       |
| Address                                                |                               | Symbol            | Monitor Format Monitor Value Modify Value      |       |
| MW 10                                                  |                               |                   | HEX                                            |       |
|                                                        |                               |                   |                                                |       |
| DB11.DBW                                               | 0                             |                   | HEX                                            |       |
| DB11.DBW                                               | 2                             |                   | HEX                                            |       |
| DB11.DBW                                               | 4                             |                   | HEX                                            |       |
| DB11.DBW                                               | 6                             |                   | HEX                                            |       |
| DB11.DBW                                               | 8                             |                   | HEX                                            |       |
| DB11.DBW                                               | 10                            |                   | HEX                                            |       |
| DB11.DBW                                               | 12                            |                   | HEX                                            |       |
| DB11.DBW                                               | 14                            |                   | HEX                                            |       |
| DB11.DBW                                               | 16                            |                   | HEX                                            |       |
| DB11.DBW                                               | 18                            |                   | HEX                                            |       |
| DB11.DBW                                               | 20                            |                   | HEX                                            |       |
| DB11.DBW                                               | 22                            |                   | HEX                                            |       |
| DB11.DBW                                               | 24                            |                   | HEX                                            |       |
| DB11.DBW                                               | 26                            |                   | HEX                                            |       |
| DD44 DDT                                               | 20                            |                   | TIEV                                           |       |

**Entering user data** You may enter user data starting with DW1. Place the cursor on *Modify value* and enter the value you wish to transfer, e.g. W#16#1111.

The button transfers the new value in every cycle and the button initiates a single transfer.

### Start-up behavior

| Overview                   | When the power supply is turned on, the CPU and the CP execute the respective BIOS routine (hardware and driver initialization and memory test).                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | While the CPU detects the installed modules on the backplane bus and loads the application program, the CP starts the page frame administration routine.                                                |
|                            | After app. 15s the CP waits for the synchronization request from the CPU. In this condition data communication with the PLC is inhibited and it is only enabled after synchronization has taken place.  |
|                            | The boot time of the CPU 821xNET including the CP amounts to app. 18s.                                                                                                                                  |
| Status after<br>CP boot-up | With every status change from STOP to RUN as well as from RUN to STOP back to RUN, the CPU821xNET performs a cold-/warm reset. All connections are cleared and reestablished after the CP has rebooted. |
|                            | Three different reasons can cause these status change requests:                                                                                                                                         |
|                            | • Resynchronization of a CP by the SYNCHRON-HTBs of the CPU (warm                                                                                                                                       |
|                            | start) after it has already been synchronized,                                                                                                                                                          |

• RESET\_ALL (warm start).

### System properties of the CPU 821xNET

| Note                    | System properties of a CP should not be regarded as restrictions or<br>equated with malfunctions. Certain functions can not be provided or are not<br>desired when the overall system is taken into account.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General                 | The boot time of the CP section of the CPU 821xNET is app. 18 seconds.<br>The integrated SYNCHRON block (delay time 30s) caters for this boot time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Note only for H1        | <ul> <li>Jobs with a priority 0/1 may transmit and/or receive a maximum quantity of data as defined by the SYNCHRON-HTB. Jobs of this priority are not blocked. This results in a maximum data transfer rate of 512Byte per job for a block size of 255 (refer also to block size).</li> <li>RECEIVE jobs that are mapped to the communication type "broadcast" cannot receive all data messages from a fast cyclic transmitter. Messages that have not been received are discarded.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Note only for<br>TCP/IP | <ul> <li>The default length (-1, 0xFFFF) is not permitted for the ORG format length, i.e. the user has to define the exact length of the data that will be received.</li> <li>Jobs with a priority of 1 may send and/or receive a maximum quantity of data as defined by the SYNCHRON-HTB. Jobs of this priority are not blocked. This results in a maximum data transfer rate of 512Byte per job for a block size of 255 (see also block size).</li> <li>RECEIVE-jobs that mapped to communication type UDP cannot receive all data messages from a fast cyclic station. Messages that have not been received are discarded.</li> <li>The TCP/IP protocol stack has a global buffer pool where the receive and transmit buffers are located. This is where system collisions can occur if:</li> <li>Data for a receive job is not collected. After a period of time a lack of resources will occur and the other connections will terminate themselves.</li> <li>It is only possible to re-establish proper communications when the receive buffers of this connection have been released (connection terminated) or when the data has been retrieved by means of RECEIVE.</li> <li>one or more cyclic stations place a load on a CP. When resource bottlenecks are encountered, the CP can also initiate the termination of connections.</li> </ul> |

- A station transmits two or more messages and the receiver did not have a chance to accept them. Then the reception of the unknown data type would cause collisions in the receiver. However, the CP prevents this. The PLC application requires a defined size for the reception of data and the wildcard length is not permitted. The size of the receive block of Prio1 RECEIVE jobs is defined implicitly by the pre-defined block size (16, 32, 64, 128, 256, 512Byte).
- Advantech recommends the use of acknowledgment messages on the user level to ensure that data transfers are one hundred percent safe.
- Please regard, that the **Port 7777** is used by WinNCS for communication. This may not be occupied by other applications!

### **Communication links to foreign systems**

**ORG format** The organization format is the abbreviated description of a data source or a data destination in a PLC environment. The following table lists the available ORG formats.

In the case of READ and WRITE the ORG block is optional.

The ERW identifier is used for the addressing of data blocks. In this case the data block number is entered into this identifier. The start address and quantity provide the address for the memory area and they are stored in HIGH/LOW format (Motorola-formatted addresses)

| Description    | Туре     | Range |
|----------------|----------|-------|
| ORG identifier | BYTE     | 1x    |
| ERW identifier | BYTE     | 1255  |
| Start address  | HILOWORD | 0y    |
| Quantity       | HILOWORD | 1z    |

The following table contains a list of available ORG formats:

#### ORG identifier 01h-04h

| CPU area                      | DB                                                                                                        | MB                                                                     | EB                                                                            | AB                                                                             |
|-------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| ORG identifier                | 01h                                                                                                       | 02h                                                                    | 03h                                                                           | 04h                                                                            |
| Description                   | Source/destination data from/into data block in main memory.                                              | source/destination data from/into flag area.                           | Source/destination<br>data from/into process<br>image of the inputs<br>(PAE). | source/destination data<br>from/into process<br>image of the outputs<br>(PAA). |
| DBNR                          | DB from where the<br>source data is retrieved<br>or to where the<br>destination data is trans-<br>ferred. | irrelevant                                                             | irrelevant                                                                    | irrelevant                                                                     |
| valid range:                  | 1255                                                                                                      |                                                                        |                                                                               |                                                                                |
| Start address<br>Significance | DB-No. from where the data is retrieved or where data is saved.                                           | MB- No. from where<br>the data is retrieved or<br>where data is saved. | EB-No. from where the data is retrieved or where data is saved.               | AB-No. from where the data is retrieved or where data is saved.                |
| valid range:                  | 02047                                                                                                     | 0255                                                                   | 0127                                                                          | 0127                                                                           |
| Quantity<br>Significance      | Length of the<br>source/destination data -<br>block in words.                                             | Length of the source/destination data block in words.                  | Length of the source/destination data block in words.                         | Length of the source/destination data block in words.                          |
| valid range:                  | 12048                                                                                                     | 1256                                                                   | 1128                                                                          | 1128                                                                           |

Structure of PLCFor every READ and WRITE the CP generates PLC headers for requestheadermessages and for acknowledgment messages. Normally the length of<br/>these headers is 16Byte and they have the following structure:

#### for WRITE

Request message

| System identifier      | ="S"  |
|------------------------|-------|
|                        | ="5"  |
| Header length          | =16d  |
| Ident.OP code          | =01   |
| OP code length         | =03   |
| OP Code                | =03   |
| ORG block              | =03   |
| ORG block length       | =08   |
| ORG identifier         |       |
| DBNR                   |       |
| Start address          | Н     |
|                        | L     |
| Length                 | Н     |
|                        | L     |
| Dummy block            | =FFh  |
| Dummy block length     | =02   |
| 64K data only if error | no.=0 |

Acknowledgment message

| System identifier  | ="S" |
|--------------------|------|
|                    | ="5" |
| Header length      | =16d |
| Ident.OP code      | =01  |
| OP Code length     | =03  |
| OP Code            | =04  |
| Ack. Block         | =0Fh |
| Ack. Block length  | =03  |
| Error No.          | =No. |
| Dummy block        | =FFh |
| Dummy block length | =07  |
|                    |      |
| not used           |      |
|                    |      |
|                    |      |
|                    |      |

#### for READ

#### Request message

| System identifier  | ="S" |
|--------------------|------|
|                    | ="5" |
| Header length      | =16d |
| Ident.OP code      | =01  |
| OP Code length     | =03  |
| OP Code            | =05  |
| ORG block          | =03  |
| ORG block length   | =08  |
| ORG identifier     |      |
| DBNR               |      |
| Start address      | Н    |
|                    | L    |
| Length             | Н    |
|                    | L    |
| Dummy block        | =FFh |
| Dummy block length | =02  |

| System identifier        | ="S" |
|--------------------------|------|
|                          | ="5" |
| Header length            | =16d |
| Ident.OP code            | =01  |
| OP Code length           | =03  |
| OP Code                  | =06  |
| Ack. block               | =0Fh |
| Ack. Block length        | =03  |
| Error No.                | =No. |
| Dummy block              | =FFh |
| Dummy block length       | =07  |
|                          |      |
| not used                 |      |
|                          |      |
|                          |      |
|                          |      |
| 64K data only if error n | o.=0 |

Acknowledgment message

**SEND / RECEIVE** of the type TRADA of the type TRADA TRADA stands for Transparent Data exchange. A transparent data exchange may transfer application data with varying block lengths. A 16Byte header that defines the length of the application data precedes the application data.

With TRADA you may enter a wildcard length into the PLC application.

If you enter "-1" as length into the RECEIVE-FB (parameter: ZLAE) you are defining a variable length (wildcard length) for the application data. With wildcard lengths the actual length of the data is retrieved from the respective TRADA header.

With the TRADA functionality the following header will precede a SEND job and it is analyzed by the RECEIVE function.

| System identifier    | ="S" |               |        |
|----------------------|------|---------------|--------|
|                      | ="5" |               |        |
| Header length        | =16d |               |        |
| Ident.OP code        | =01  |               |        |
| OP code length       | =03  |               |        |
| OP code              | =07  | 1             |        |
| ORG block            | =03  |               |        |
| ORG block length     | =08  |               |        |
| ORG identifier       |      |               |        |
| DBNR (irrelevant)    |      |               |        |
| Start address        | Н    |               |        |
|                      | L    |               |        |
| Length               | Н    | $\rightarrow$ | Length |
|                      | L    |               |        |
| Dummy block          | =FFh |               |        |
| Dummy block length   | =02  |               |        |
| 64K data if error no | o.=0 |               |        |

SEND of type TRADA OP-code = 07

Length of the user data

**Length** The length file contains the number of bytes in a data block.

If you are synchronizing with a block size of 6 (512Byte) the length is entered in words.

### Test program for TCP/IP connections

The test program TCPTest is included with WinNCS. You may use this test program to create simple TCP/IP connections and analyze them. After the installation of WinNCS TCPTest is to find in the directory NCS. The following section provides a short introduction to the test program. For this purpose please start TCPTEST.EXE. The test program is executed and displays the following window:

| Initial display | Connect ReadA WriteA Receive Send System           |                          |
|-----------------|----------------------------------------------------|--------------------------|
|                 | <b>CP 143 TCP/IP</b><br>Evaluation Program V 1.0.0 | ADIANTECH<br>eAutomation |
|                 | Connection 1: Read Active                          | Conn1State               |
|                 | Connection 2: Write Active                         | Conn2State               |
|                 | Connection 3: Receive                              | Conn3State               |
|                 | Connection 4: Send                                 | Conn4State               |
|                 | Connection 5: System Services                      | Conn5State               |
|                 | My Host Address:                                   |                          |

**Tab sheets**The menu has the appearance of tab sheets. The respective dialog window<br/>may be displayed by left clicking with the mouse.

| Tab sheets |                                                                              |
|------------|------------------------------------------------------------------------------|
| Connect    | window containing the status of the connections and the local IP address.    |
| ReadA      | configuration window for READ ACTIVE connections (FETCH).                    |
| WriteA     | configuration window for WRITE AKTIVE connections.                           |
| Receive    | configuration window for RECEIVE orders.                                     |
| Send       | configuration window for SEND orders.                                        |
| System     | control windows for status requests and toggling between RUN/STOP of the CP. |

Context menuYou may activate a context menu in each tab sheet. This is activated by<br/>means of the right mouse key.

You may always access the context menu by clicking the right mouse key. This menu offers the following selection:

| Save All     | save all parameters.                                                                                          |
|--------------|---------------------------------------------------------------------------------------------------------------|
| Save Conn1   |                                                                                                               |
| to           | saves the respective connection.                                                                              |
| Save Conn5   |                                                                                                               |
| Save Win Pos | saves the current window position.                                                                            |
| Show Hints   | When you place the cursor on an input field or on a button, a hint is displayed if you selected "Show Hints". |

| Connect tab |                                                    |                           |
|-------------|----------------------------------------------------|---------------------------|
| (Status)    | Connect ReadA WriteA Receive Send System           |                           |
|             | <b>CP 143 TCP/IP</b><br>Evaluation Program V 1.0.0 | AD\-ANTECH<br>eAutomation |
|             | Connection 1: Read Active                          | Conn1State                |
|             | Connection 2: Write Active                         | Conn2State                |
|             | Connection 3: Receive                              | Conn3State                |
|             | Connection 4: Send                                 | Conn4State                |
|             | Connection 5: System Services                      | Conn5State                |
|             | My Host Address:                                   |                           |

This window displays the status of all the connections that can be configured in this program. Here you may recognize in one screen, which connections are stable and which are unstable. When a status changes in a register, the change is displayed in this window.

For reference, your own IP address is also displayed in the window.

#### **ReadA tab**



- [1] port data
- [2] establish a connection
- [3] hexadecimal number
- [4] information window for the status of the connection
- [5] source data
- [6] ASCII formatted display of the data received

Here you may configure an active read connection.

In addition to the data required to establish the connection, you also have to specify the source from where the data should be read.

| Input fields  |                                                                                                                                                                      |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remote Host   | IP address of the station from which you wish to read data.                                                                                                          |
| Remote Port   | Port address of the remote station.                                                                                                                                  |
| Local Port    | Port address of your own (local) station. To simplify matters you can specify the same port address for remote and local.                                            |
| Time (10mSec) | Definable interval for cyclic read operations.                                                                                                                       |
| OrgKennung    | Type of the source block.                                                                                                                                            |
| DBNr          | Number of the source block.                                                                                                                                          |
| AnfAdr        | Start address of the source block.                                                                                                                                   |
| Len           | Word length of the source block.                                                                                                                                     |
| Tick-box      |                                                                                                                                                                      |
| UDP           | This tick mark selects unsecured communications. No virtual connections are used by unsecured communication links. In this manner you may only display UDP messages. |

#### Buttons

- *Connect* The connection is established and prepared for the read operation.
- *Read this* The data requested is read via this connection.

#### WriteA tab



This is where you activate an active write connection.

In the same way as for the READ active command, you declare the destination block from where the data has to be transferred in addition to the data required for establishing the connection.

#### Input fields

| Remote Host   | IP address of the station to which you wish to write the data.                                                                                                       |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Remote Port   | Port address of the remote station.                                                                                                                                  |  |
| Local Port    | Port address of your own (local) station. To simplify matters you can specify the same port address for remote and local.                                            |  |
| Time (10mSec) | Definable interval for cyclic write operations. The minimum timer value for cyclic writes is 5.                                                                      |  |
| OrgKennung    | Type of destination block.                                                                                                                                           |  |
| DBNr          | Number of destination block.                                                                                                                                         |  |
| AnfAdr        | Start address of destination block.                                                                                                                                  |  |
| Len           | Word length of destination block.                                                                                                                                    |  |
| Tick-box      |                                                                                                                                                                      |  |
| UDP           | This tick mark selects unsecured communications. No virtual connections are used by unsecured communication links. In this manner you may only display UDP messages. |  |
| Buttons       |                                                                                                                                                                      |  |
| Connect       | The connection is established and prepared for the write operation.                                                                                                  |  |
| Write this    | Data entered into the ASCII field is transferred to the CP via the connection that was established by means of <i>Connect</i> .                                      |  |

#### **Receive tab**



- [1] Connection data
- [2] connection status
- information bar
- [3] clear received list
- [4] list messages
- [5] list of received messages

In this dialog window you configure the reception of messages from a specific host.

#### Input fields

| Remote Host<br>Remote Port | IP address of the station where the data will be saved.<br>Port address of the remote station.                                                                       |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Local Port                 | Port address of own (local) station. To simplify matters you may specify the same port address for remote and local.                                                 |
| Tick-box                   |                                                                                                                                                                      |
| UDP                        | This tick mark selects unsecured communications. No virtual connections are used by unsecured communication links. In this manner you may only display UDP messages. |

AutoListen If you select "AutoListen", the program switches to receive mode. Every message received from the remote CP is displayed in the list. Interruptions of the connection are detected and displayed, however, the program remains ready to receive data. As soon as the connection is re-established messages will again be listed.

#### **Buttons**

- *Listen* Any received messages are entered into the list. The listing is stopped when you click the "STOP" button or the connection is interrupted. You may also stop the listing by entering a new set of connection parameters.
- *ClearList* Clears the received list, new entries will appear at the top of the list.

#### Send tab

|   | Connect ReadA WriteA Receive Send System                                            |   |
|---|-------------------------------------------------------------------------------------|---|
| 1 | <br>Remote Host:     132.2.4.10       Remote Port:     5004       Local Port:     0 | 6 |
| 2 | <br>Time (10mSec):     0       UDP     Connect                                      |   |
| 3 | <br>Send this: Conn4Data                                                            | 7 |
|   | Time Data                                                                           |   |
| 4 | <br>-                                                                               |   |
| 5 | <br>Info                                                                            |   |

- [1] port data
- [2] establish a connection
- [3] transfer data via the connection
- [4] list of transmitted messages
- [5] information bar for the connection status
- [6] clear the list of messages
- [7] ASCII-text that must be
  - transferred to the CP

You may use this dialog window to send a message to a specific host.

#### Input fields

| input noido   |                                                                                                                                                                      |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Remote Host   | IP address of the station where the data must be saved.                                                                                                              |  |
| Remote Port   | Port address of the remote station.                                                                                                                                  |  |
| Local Port    | Port address of own (local) station. To simplify matters you can specify the same port address for remote and local.                                                 |  |
| Time (10mSec) | Definable interval for cyclic write operations. The mini-<br>mum timer value for cyclic writes is 5.                                                                 |  |
| Tick-box      |                                                                                                                                                                      |  |
| UDP           | This tick mark selects unsecured communications. No virtual connections are used by unsecured communication links. In this manner you may only display UDP messages. |  |

#### **Buttons**

- *Connect* The connection is established and prepared for the write operation.
- Send this Data entered into the ASCII field is transferred to the CP via the connection that was established by means of *Connect*.



#### System tab

- [1] port data
- [2] establish a connection
- [3] information bar for the
- connection status
- [4] CP status query
- [5] CP in STOP
- [6] CP in RUN
- [7] Status monitor, requested by GetState

This dialog window gives you information about your specified Host-CP.

#### Input fields

| Remote Host<br>Remote Port | IP address of the station where the data will be saved.<br>Port address of the remote station.                                               |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Local Port                 | Port address of own (local) station. To simplify matters you may specify the same port address for remote and local.                         |
| Buttons                    |                                                                                                                                              |
| Connect                    | The connection is established and prepared for the write operation.                                                                          |
| GetState                   | Via the connection established by <i>Connect</i> , the status of the CP is transferred and monitored in the status window. This may be seen: |
|                            | <ul> <li>Hardware-Stop (RUN/STOP lever at the CP is in STOP position)</li> <li>The CP is not remoteable with the test program.</li> </ul>    |
|                            | - Hardware-Run (RUN/STOP lever at the CP is in RUN position)                                                                                 |
|                            | - Software-Stop (RUN/STOP lever at the CP is in RUN                                                                                          |
|                            | position)                                                                                                                                    |
|                            | The CP has been switched to STOP with SetStop.                                                                                               |
|                            | <ul> <li>Software-Run (RUN/STOP lever at the CP is in RUN position)</li> <li>The CP has been switched to RUN with SetRun.</li> </ul>         |
| SetStop                    | The CP is switched to STOP. This function is only available, if the RUN/STOP lever at the CP is in RUN position.                             |
| SetRun                     | The CP is switched to RUN. This function is only available, if the RUN/STOP lever at the CP is in RUN position.                              |

### Chapter 5 Deployment of the CPU 821xDPM

| Outline | Content of this chapter is the deployment of the CPU 821xDP<br>Profibus. After a short introduction into the Profibus system, th<br>engineering and the usage under MPI is shown. | M under<br>e project |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|         | This chapter ends with information to the operating modes of master and to the commissioning.                                                                                     | the DP               |
|         | The following text describes:                                                                                                                                                     |                      |
|         | Principles of Profibus-DP                                                                                                                                                         |                      |
|         | Proyect engineering of a CPU 82 IXDPM     Depleyment of the MDL interface and MMC                                                                                                 |                      |
|         | Deployment of the MPI-Interface and MMC                                                                                                                                           |                      |
|         | Operating modes of the DP master                                                                                                                                                  |                      |
|         | Commissioning                                                                                                                                                                     |                      |
| Content | Торіс                                                                                                                                                                             | Page                 |
|         | Chapter 5 Deployment of the CPU 821xDPM                                                                                                                                           | 5-1                  |
|         | Principles                                                                                                                                                                        | 5-2                  |
|         | Project engineering CPU with integrated Profibus-DP master                                                                                                                        | 5-5                  |
|         | Project transfer                                                                                                                                                                  | 5-9                  |
|         | DP master operating modes                                                                                                                                                         | 5-12                 |

### Principles

**General** Profibus is an open fieldbus standard for building, manufacturing and process automation. Profibus defines the technical and functional properties of a serial fieldbus system that is used to create a network of distributed digital field automation equipment on the lower (sensor-/actuator level) to middle performance level (process level).

Profibus comprises various compatible versions. The specifications contained in this description refer to Profibus-DP.

**Profibus-DP** Profibus-DP is particularly suitable for applications in production automation. DP is very fast, offers plug&play and is a cost-effective alternative to parallel cabling between PLC and the decentral/distributed periphery. Profibus-DP is conceived for high-speed data exchange on the sensoractuator level.

The data exchange is processed cyclically. During a one bus cycle the master reads the input values from the various slaves and writes new output information into the slaves.

**Master and slaves** Profibus distinguishes between active stations (masters) and passive stations (slaves).

#### Master equipment

Master equipment controls the data traffic on the bus. There may be also several masters at one Profibus. This is referred to as multi master operation. The bus protocol establishes a logical token ring between the intelligent devices connected to the bus.

A master like in the CPU 821xDPM may send unsolicited messages if it has the bus access permission (Token). In the Profibus protocol masters are also referred to as active stations.

#### Slave equipment

Typical slave equipment holds data of peripheral equipment, sensors, actuators or transducers. The ADAM Profibus are modular slave equipment, transferring data between the System 82xx periphery and the leading master.

These devices do not have bus access permission in accordance with the Profibus standard. They may only acknowledge messages or transfer messages to a master if requested by this. Slaves occupy a very limited part of the bus protocol. Slaves are also referred to as passive stations.

**Communication** The bus communication protocol provides two procedures for accessing the bus:

Master to MasterCommunications with the master is also referred to as token passing<br/>procedure. Token passing guarantees that the station receives access<br/>permission to the bus. This access right to the bus is passed between the<br/>stations in form of a "token". A token is a specific message that is<br/>transferred via the bus.When a master possesses the token, it has the access right to the bus and<br/>is allowed to communicate with all other active and passive stations. The<br/>token retention time is defined when the system is being configured. When<br/>the token retention time has expired, the token is passed along to the next<br/>master that acquires the bus access rights with the token so that this may<br/>now communicate with all other stations.

**Master slave** procedure Data is exchanged in a fixed repetitive sequence between the master and the slaves assigned to this respective master. When you configure the system, you define which slaves are assigned to a certain master. You may also specify which DP slave is included in the cyclic exchange of application data and which ones are excluded.

> The master slave data transfer is divided into parameterization, configuration and data transfer phases. Before a DP slave is included into the data transfer phase, the master verifies during the parameterization and configuration phase whether the specified configuration agrees with the effective configuration. This verification process checks the device type, format and length as well as the number of inputs and outputs. This provides you with effective protection against configuration errors.

> The master handles application data transfers independently. In addition you may also send new configuration data to a bus coupler.

If in the status DE "Data Exchange", the master is sending new basic data to the slave and the receipt of the slave transfers the recent input data to the master.

**Data consistency** Data is referred to as being consistent, if it has the same logical contents. Data that belongs together is: the high- and low-byte of an analog value (word consistency) and the control and the status byte with the respective parameter word, required to access the registers.

The data consistency during the interaction between the peripherals and the controller is only guaranteed for 1Byte. That is, the bits of one byte are acquired together and they are transmitted together. Byte-wise consistency is sufficient for the processing of digital signals.

| Transfer medium                                  | As transfer medium Profibus uses an isolated drilled 2 core line based upon<br>the RS485 interface or a duplex optical waveguide (OWG). The transfer<br>rate is for both methods max. 12Mbaud.                                                                                                                                                                                                                                                  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | More information about this topic is available at the installation guideline.                                                                                                                                                                                                                                                                                                                                                                   |
| Electrical system<br>over RS485                  | The RS482 interface is working with voltage differences. Though it is less irritable from failures than a voltage or a current interface. You are able to configure the network as well linear as in a tree structure. Your ADAM Profibus coupler includes a 9pin slot where you link up the Profibus coupler into the Profibus network as a slave.                                                                                             |
|                                                  | The bus structure under RS485 allows an easy connection resp.<br>disconnection of stations as well as starting the system step by step. Later<br>expansions don't have any influence on stations that are already integrated.<br>The system realizes automatically if one partner had a fail down or if it is<br>new in the network.                                                                                                            |
| Optical system via<br>optical waveguide<br>(OWG) | The optical waveguide system uses monochromatical light impulses. The optical waveguide is totally independent from disturbing voltage from other machines. An optical waveguide system is built up linear. Every module has to be connected with two links: one input link and one back. You don't need to terminate the last module.<br>For the structure is a linear one, connecting and disconnecting stations is not free of consequences. |
| Addressing                                       | Every partner of the Profibus network has to identify itself with a certain address. This address may be existing only one time in the bus system and has a value between 0 and 125.<br>At the CPU 821xDPM you choose the address via your software tool.                                                                                                                                                                                       |
| Electronic Data<br>Sheet<br>(GSD-file)           | To configure the slave connections in your own configuration tool, you've got all the information about your ADAM modules in form of an electronic data sheet file (German: <i>Gerätestammdatei</i> = <i>GSD-file</i> ).<br>Structure and content of this file are dictated by the Profibus User Organization (PNO) and may be seen there.                                                                                                      |
|                                                  | Install the GSD-file in your configuration tool. Look for more information in the online help of the according tool.                                                                                                                                                                                                                                                                                                                            |

### Project engineering CPU with integrated Profibus-DP master

Outline For the project engineering of the Profibus-DP master you have to use the hardware manager from Siemens. Your Profibus projects are transferred via MPI into the CPU 821xDPM by means of the PLC functions. The CPU passes the data on to the Profibus-DP master.

Compatibility to<br/>STEP®7 manager<br/>from SiemensThe address allocation and the parameterization of the directly plugged-in<br/>modules takes place via the STEP®7 manager from Siemens in form of a<br/>virtual Profibus system.

For the Profibus interface is standardized in software, you'll have the complete functionality of our modules at your disposal by including the GSD-file into the STEP<sup>®</sup>7 manager.

# Steps of<br/>engineeringTo be compatible with the STEP®7 projecting tool from Siemens, you have<br/>to execute the following steps for the System 82xx:

- Project the CPU 315-2DP with the DP master system (address 2).
- Add the Profibus slave with address 1.
- Insert the CPU type 821xDPM at plug-in location 0 of the slave system.
- Include directly plugged-in peripheral modules also via this slave at the plug-in locations 1...32.

#### CPU 821xDPM central



1

#### Note!

For the project engineering of the CPU and the Profibus-DP masters a thorough knowledge of the STEP<sup>®</sup>7 manager and the hardware configurator from Siemens is required!
| Preconditions                               | <ul> <li>For the project engineering of the Profibus-DP master in the CPU 821xDPM the following preconditions have to be fulfilled:</li> <li>STEP<sup>®</sup>7 manager from Siemens is installed.</li> <li>When using Profibus-DP slaves of the Systems ADAM 8xxx from Advantech: GSD-files are included into the hardware configurator</li> <li>There is a transfer possibility between configuration tool and CPU 821xDPM.</li> </ul>                                                                                                                                                                         |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Install Siemens<br>hardware<br>configurator | The hardware configurator is a part of the STEP <sup>®</sup> 7 projecting tool from Siemens. It serves the project engineering. The modules that may be configured here are listed in the hardware catalog.<br>For the deployment of the Profibus-DP slaves of the Systems ADAM 8xxx from Advantech you have to include the modules into the hardware catalog by means of the GSD-file from Advantech.                                                                                                                                                                                                          |
| Project<br>engineering<br>CPU 821xDPM       | The following section describes the single steps of the project engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Create a virtual<br>Profibus system         | <ul> <li>Create a new project System 300V.</li> <li>Add a profile rail from the hardware catalog.</li> <li>In the hardware catalog the CPU with Profibus master is listed as:<br/>Simatic300 &gt; CPU-300 &gt; CPU315-2DP &gt; 6EST 315-2AF01-0AB0.</li> <li>Insert the CPU 315-2DP (6EST 315-2AF01-0AB0).</li> <li>Type the Profibus address of your master.</li> <li>Click on "DP", choose the operating mode "DP master" under object properties and confirm your entry with OK.</li> <li>Click on "DP" with the right mouse button and choose "add master system". Create a new Profibus subnet.</li> </ul> |

ConfigureTo be, like mentioned above, compatible to the STEP®7 projecting tool fromCPU sectionSiemens, you have to include the CPU section explicitly.

- Add the System "DP8000" to the Profibus subnet. You find this in the hardware catalog under PROFIBUS DP > Additional field devices > IO > DP8000.
- Assign the Profibus address 1 to this slave.
- Place the CPU 821x-2BM01 from Advantech at the plug-in location 0 in your configurator. **The plug-in location 0 is mandatory!**

Now the project engineering of your Profibus-DP master and your CPU is finished. The following shows how to include the directly plugged-in System 8xxx modules.

# Configure central periphery

To include the modules plugged-in at the bus, you drag the according System 8xxx modules from the hardware catalog under *ADAM821x* and drop it on the locations below the CPU. Start with plug-in location 1.



Parameterize<br/>modulesSystem 8xxx modules may get up to 16Byte parameter data from the CPU.<br/>Using the STEP®7 manager from Siemens, you may assign parameters for<br/>parameterizable System 8xxx modules at any time.

For this purpose double-click in the plug-in location overview on the concerning module. The following picture shows the parameterization of the positioning module FM 8254:



#### Configure DP-Slaves

For the project engineering of Profibus-DP slaves coupled at the DP master of the CPU 821xDPM, you approach analog to the ADAMCPU821x system. Search the concerning Profibus-DP slave ADAM CPU 821x\_DP in the hardware catalog and drag&drop it in the subnet of your master. Assign a valid Profibus address to the DP slave (> 3).

CPU 821xDPM central



## **Project transfer**

| Outline                 | <ul> <li>There are 2 possibilities for the transfer of your project into the CPU:</li> <li>Transfer via MPI</li> <li>Transfer via MMC at deployment of a MMC reading device</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer via MPI        | The structure of a MPI net is in principal same to the one of a 1.5MBaud<br>Profibus net. This means, the same rules are valid and you use the same<br>components for assembly.<br>Per default, the MPI net is running with 187kBaud.<br>Every bus participant identifies itself at the bus with an unique MPI address.<br>You connect the single participant by means of bus interface plugs and the<br>Profibus bus cable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Terminating<br>resistor | A conductor has to be terminated with its ripple resistor. Herefore you activate the terminating resistor at the first and the last participant of a net or a segment.<br>Please regard, that the participants with the activated terminating resistors are always supplied with voltage during start-up and operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Approach                | <ul> <li>Connect your PU resp. your PC via MPI with the CPU.<br/>If your programming device has no MPI-interface, you may use the ADAM "Green Cable" to establish a serial point-to-point-connection from your PC to MPI.<br/>The "Green Cable" has the order no. ADAM-8950-0KB00 and may only be used with the ADAM CPUs of the Systems 8xxx.<br/>Please regard the notes about the "Green Cable" in chapter 1!</li> <li>Configure the MPI-interface of your PC.</li> <li>With PLC &gt; Load to module in your projecting tool, you transfer your project into the CPU.</li> <li>For an additional backup of your project on the MMC, you plug in a MMC and transfer the user application to the MMC by means of PLC &gt; Copy RAM to ROM.<br/>During the writing process the "MC"-LED at the CPU is blinking. Due to the system, a successful writing operation is signaled to soon. The writing operation is only finished, when the LED extinguishes.</li> </ul> |
| •                       | <b>Note!</b><br>Further information to MPI is to find under "Commissioning".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Configure MPI** Hints for the configuration of a MPI-interface is to find in the documentation of your programming software.

Here, only the usage of the ADAM "Green Cable" together with the programming tool from Siemens shall be shown.

The "Green Cable" establishes a serial point-to-point connection between the COM-interface of the PC and the  $MP^2I$ -interface of the CPU.



#### Attention!

Please regard, that you may use the Green Cable exclusively at the MP<sup>2</sup>Iinterfaces of the Systems ADAM 8xxx from Advantech!

Please regard the notes about the "Green Cable" in chapter 1!

Approach

- Start the STEP<sup>®</sup>7 manager from Siemens.
- Choose **Options** > Set PG/PC interface
  - $\rightarrow$  The following dialog window appears, where you may configure the wanted MPI-interface:



- Choose "PC Adapter (MPI)" from the list; if necessary you have to add it first.
- Click on < Properties >
- $\rightarrow$  In the following 2 sub dialogs you may configure your PC adapter, like shown in the picture.

| 1                     | <b>Note!</b><br>Please make sure to adjust the transmission rate to 38400Baud when using the "Green Cable"                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Usage of the<br>MMC   | As external storage medium the Multi Media Card (MMC) is used. The MMC is available from Advantech under the order number ADAM-8953-0KX00.                                                                                                                                                                                                                                                                                                                                                                         |
|                       | The reading of the MMC takes always place after an OVERALL_RESET.<br>The writing on the MMC starts via a WRITE command from the hardware<br>configurator from Siemens or via a MMC reading device from Advantech<br>(Order No.: ADAM-8950-0AD00). Thus it is possible to create applications<br>at the PC, copy them to the MMC and transfer them to the ADAM CPU by<br>plugging-in the MMC.<br>The MMC modules are delivered from Advantech preformatted with the file<br>system FAT16.                           |
| Required Files        | There may be several projects and subfolders on one MMC storage module. Therefore you have to make sure, that your recent project is located in the root directory and has the following file name: <b>S7PROG.WLD</b> .                                                                                                                                                                                                                                                                                            |
| Transfer<br>CPU → MMC | If there is a plugged MMC in the CPU, the content of the battery buffered RAM is transferred to the MMC by means of a WRITE command.<br>The write command is started from the hardware configurator from Siemens via <b>PLC</b> > <i>Copy RAM to ROM</i> .<br>During the writing process the yellow "MC"-LED of the CPU is blinking.                                                                                                                                                                               |
| Transfer<br>MMC → CPU | The transfer of the user application from the MMC into the CPU always takes place after an OVERALL_RESET. The blinking of the yellow LED "MC" on the CPU marks the transfer process.<br>If there is no valid user application on the plugged MMC or the transfer fails, an OVERALL_RESET of the CPU takes place and the STOP-LED blinks for three times.<br>Now the master is linked up to the network with the following default parameters:<br><b>Default-Bus-Parameter: Address: 1, Transfer rate: 1.5MBaud</b> |
|                       | <b>Note!</b><br>If the user application is larger than the user memory of the CPU, the content of the MMC is not transferred into the CPU.<br>If you initialize the writing process without plugged MMC, this leads to an error message about inadequate memory.<br>Before transferring the user application to the MMC it is convenient to initialize a compression.                                                                                                                                              |

### **DP** master operating modes

 STOP → RUN (automatically)
 After POWER\_ON and with valid configuration data in the CPU, the master switches automatically into RUN. There is no operating mode lever for the master.
 Now the communication to the DP slaves is established. During this time only the RUN-LED is on. At successful communication and valid bus parameters, the DP master switches to Data Exchange (DE). The LEDs RUN and DE are blinking.
 At invalid parameters the DP master switches to RUN and monitors a parameterization error via the IF-LED.

Now the DP master is linked up at the bus with the following default bus parameters:

#### Default-Bus-Parameter: Address:1, Transfer rate:1.5MBaud.

**RUN** In the RUN mode, the RUN- and the DE-LEDs are blinking. Now data may be exchanged. If an error occurs, like e.g. DP slave failure, this is shown at the DP master via the ERR-LED and an alarm is initialized to the CPU.

| Т |    |
|---|----|
| 4 | ι. |

#### Note!

If the CPU goes into STOP during operation, the DP master stays in RUN. By means of the BASP signal all outputs of the peripheral modules, linked up via the DP slaves, are set to zero.

## **Commissioning and Start-up behavior**

| Check list for<br>commissioning | <ul> <li>Turn off your power supply</li> <li>Build up your system</li> <li>Cable your system</li> <li>Plug in your MMC with CPU program and Profibus project</li> <li>Turn on your power supply</li> <li>For transferring your project from the MMC into the CPU, request an OVERALL_RESET</li> </ul> |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Turn on<br>power supply         | Turn on the power supply. The course of events, described under "start-up behavior", is following.                                                                                                                                                                                                    |

#### **OVERALL\_RESET** The following picture shows the approach once more:



| Default boot<br>procedure, as<br>delivered | When the CPU is delivered it has been reset.<br>After a STOP→RUN transition the CPU switches to RUN without program.<br>After NETZ_EIN (power on), the DP master tries to get parameters from the<br>CPU.<br>For the master doesn't get valid parameters from the CPU it starts with |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | For the master doesn't get valid parameters from the CPU, it starts with default parameters (Addr.:1, 1.5MBit) from its ROM and shows this via the IF-LED.                                                                                                                           |

| Boot procedure with<br>valid data in the<br>CPU | The CPU switches to RUN with the program stored in the battery buffered RAM.<br>The DP master receives valid parameters and starts with them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boot procedure<br>with valid<br>Memory Card     | The reading of a MMC only takes place after an OVERALL_RESET.<br>After the OVERALL_RESET, the DP master proofs the validity of the<br>parameters in the CPU.<br>If these are valid, they are taken over.<br>If they are invalid, the CPU switches to STOP and the DP master starts<br>with the default values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Start-up at empty<br>battery                    | The battery is loaded directly via the integrated power supply by means of a special load electronic and provides a buffer of max. 30 days. Is this time exceeded, there may be a total discharge of the battery and the battery buffered RAM is erased.<br>Now the CPU proceeds an overall_reset. If a MMC is plugged-in, the application on it is transferred into the RAM and the DP master is supported with parameters.<br>If these are valid, the DP master links-up to the bus with those parameters.<br>If they are not valid, the master starts with default values of its ROM (Add.:1; 1.5MBit) and monitors this via the IF-LED.<br>Depending on the operating mode selected at the module, the CPU switches to RUN resp. stays in STOP.<br>This procedure is fixed in the diagnostic buffer by means of the following entry: "Automatic start OVERALL_RESET (unbuffered NETZ_EIN/ Power_on)". |

## Chapter 6 Deployment of the CPU 821xDP

#### Outline

This chapter describes applications of the CPU 821xDP under Profibus. You'll get all information for the deployment of an intelligent Profibus-DP slave. An example for the CP 821xDP and the CPU 821xDPM concludes the chapter.

This chapter contains a description of:

- the principles of Profibus-DP
- configuration and parameterization of a CPU 821xDP
- diagnostic and status messages
- assembly and commissioning
- communication example

| Contents | Торіс                                  | Page |
|----------|----------------------------------------|------|
|          | Chapter 6 Deployment of the CPU 821xDP | 6-1  |
|          | Principles                             |      |
|          | CPU 821xDP configuration               |      |
|          | DP slave parameters                    | 6-12 |
|          | Diagnostic functions                   | 6-15 |
|          | Internal status messages to CPU        | 6-18 |
|          | Profibus Installation guidelines       |      |
|          | Commissioning                          | 6-25 |
|          | Example                                | 6-27 |

## Principles

- GeneralProfibus is an international open fieldbus standard for building,<br/>manufacturing and process automation. Profibus defines the technical and<br/>functional properties of a serial fieldbus system that can be used to create a<br/>network of distributed digital field automation equipment on the lower<br/>(sensor-/actuator level) to middle performance level (process level).Profibus comprises various compatible versions. The specifications<br/>contained in this description refer to Profibus-DP.
- Profibus-DPProfibus-DP is particularly suitable for applications in production<br/>automation. DP is very fast, offers plug&play and is a cost-effective<br/>alternative to parallel cabling between PLC and the distributed/decentrali-<br/>zed periphery. Profibus-DP is conceived for high-speed data exchange on<br/>the sensor-actuator level.The data exchange happens cyclically. During one bus cycle the master

reads the input values from the various slaves and writes new output information into the slaves.

**Master and slaves** Profibus distinguishes between active stations (masters) and passive stations (slaves).

#### Master equipment

Master equipment controls the data traffic on the bus. There may be also several masters at one Profibus. This is referred to as multi master operation. The bus protocol establishes a logical token ring between the intelligent devices connected to the bus.

A master like in the CPU 821xDPM is allowed to send unsolicited messages if it has the bus access permission (Token). In the Profibus protocol these masters are also referred to as active stations.

#### Slave equipment

Typical slave equipment holds data of peripheral equipment, sensors, actuators, transducers. The ADAM Profibus couplers are modular slave devices that transfer data between the System 8xxx periphery and the leading master.

These devices do not have bus access permission in accordance with the Profibus standard. They may only acknowledge messages or transfer messages to a master if requested by the respective master. Slaves are also referred to as passive stations.

**Communication** The bus communication protocol provides two procedures for accessing the bus:

**Master to Master** Communication with the master is also referred to as token passing procedure. Token passing guarantees that the station receives access permission to the bus. This access right to the bus is passed between the stations in form of a "token". A token is a specific message that is transferred via the bus.

When a master possesses the token it also has the access right to the bus and is allowed to communicate with all other active and passive stations. The token retention time is defined at system configuration. When the token retention time has expired, the token is passed along to the next master that acquires the bus access rights with the token so that it may communicate with all other stations.

Master slave procedure Data is exchanged in a fixed repetitive sequence between the master and the slaves assigned to the respective master. When you configure the system you define which slaves are assigned to a certain master. You may also specify which DP slave is included in the cyclic exchange of application data and which ones are excluded.

> The master slave data transfer is divided into parameterization, configuration and data transfer phases. Before a DP slave is included in the data transfer phase the master verifies during the parameterization and configuration phase, whether the specified configuration agrees with the effective configuration. This verification process checks the device type, format and length as well as the number of inputs and outputs. This provides you with effective protection against configuration errors.

> The master handles application data transfers independently. In addition you may also send new configuration data to a bus coupler.

If in the status DE "Data Exchange", the master is sending new basic data to the slave and the responding telegram of the slave transfers the recent input data to the master.

The principle of data transfer operations

The data exchange between the DP master and the DP slave is performed in a cycle using send and receive buffers.



PE: Process picture of the inputs PA: Process picture of the outputs

- V-bus cycle In one V-bus cycle (i.e. backplane bus) all input data of the single modules are collected in the PE and all output data from the PA are transferred to the output modules. After the data exchange is completed, the PE is transferred to the sending buffer (buffer send) and the content of the input buffer (buffer receive) is transferred to PA.
- DP cycle
   In one Profibus cycle the master contacts all its slaves with a data exchange. There the memory areas assigned to the Profibus are written resp. read.
   Afterwards the DP master transmits data of the input area to the receive buffer of the communication processor and the data of the send buffer is transferred into the Profibus output area.
  - The DP master to DP slave data exchange on the bus is repeated cyclically and does not depend on the V-bus cycle.

V-bus cycle vs.To guarantee a simultaneous data transfer the V-bus cycle time should al-<br/>ways be same or lower than the DP cycle time.DP cycleIn the delivered GSD you'll find the parameter min slave interval = 3ms.

Thus guarantees that the Profibus data on the V-bus is updated latest every 3 ms. Though you are allowed to execute one data exchange with the slave every 3 ms.

**Data consistency** Data is referred to as being consistent, if it has the same logical contents. Data that belongs together is: the high- and low-byte of an analog value (word consistency) and the control and the status byte with the respective parameter word required to access the registers.

The data consistency during the interaction between the peripherals and the controller is only guaranteed for 1 byte. That is, the bits of one byte are acquired together and they are transmitted together. Byte-wise consistency is sufficient for the processing of digital signals.

Where the length of the data exceeds a single byte, e.g. analog values, the data consistency must be expanded. Profibus guarantees consistency for the required length of data. Please ensure that you use the correct method to read consistent data from the Profibus master into your PLC.

For additional information please refer to the manual on your Profibus master as well as the one for the interface module.

**Restrictions** If a high-level master fails, this is not recognized automatically by the CPU. You should always pass along a control byte to indicate the presence of the master thereby identifying valid master data.

The example at the end of this chapter also explains the use of the control byte.

**Diagnosis** There is a wide range of diagnosis functions under Profibus-DP to allow a fast error localization. The diagnosis data are broadcasted by the bus system and summarized at the master.

| Transfer medium                                  | As transfer medium Profibus uses an isolated twisted-pair cable based<br>upon the RS485 interface or a duplex photo cable. The transfer rate is for<br>both methods max. 12Mbaud.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Electrical system<br>over RS485                  | The RS482-interface is working with voltage differences. Though it is less irritable from failures than a voltage or a current interface. You are able to configure the network as well linear as in a tree structure. Your ADAM Profibus coupler includes a 9pin slot where you connect the Profibus coupler into the Profibus network as a slave.<br>The bus structure under RS485 allows an easy connection resp. disconnection of stations as well as starting the system step by step. Later expansions don't have any influence on stations that are already integrated. The system realizes automatically if one partner had a fail down or is new in the network. |
| Optical system via<br>optical waveguide<br>(OWG) | The optical waveguide system uses monochromatically light impulses. The optical waveguide is totally independent from disturbing voltage from other machines. An optical waveguide system is built up linear. Every module has to be connected with two links: one input link and one back. You don't need to terminate the last module.<br>For the structure is a linear one, connecting and disconnecting stations is not free of consequences.                                                                                                                                                                                                                         |
| Addressing                                       | Every partner of the Profibus network has to identify itself with a certain address. This address may be existing only one time in the bus system and has a value between 0 and 125.<br>At the CPU 821xDPM you choose the address via your software tool.                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GSD-file                                         | To configure the slave connections in your own configuration tool, you've got all the information about your ADAM modules in form of an electronic data sheet file.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  | Structure and content of this file are dictated by the Profibus User Organization (PNO) and can be seen there.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                  | Install this file in your configuration tool. Look for more information in the online help of the according tool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## **CPU 821xDP configuration**

| Out | tline |
|-----|-------|
|-----|-------|

In contrast to the ADAM Profibus slave IM 8253DP, the Profibus coupler in the CPU 821xDP is an "intelligent coupler".

The "intelligent coupler" processes data that is available from an input or an output area of the CPU. This area and an area for status and diagnostic data are fixed via the CPU 821xDP properties. Separate memory areas are used for input and for output data. Those areas are to handle with your PLC program.

Due to the system, the address areas occupied by the coupler are not displayed in the hardware configurator from Siemens. For the directly plugged-in System 82xx modules are also included in the periphery address range, there may occur address overlappings during the automatic address allocation.



#### Note!

For configuring the CPU and the Profibus-DP master a thorough knowledge of the STEP<sup>®</sup>7 manager and the hardware configurator from Siemens is required!

| Possibility of<br>configuration in<br>the STEP <sup>®</sup> 7<br>manager from<br>Siemens | The address allocation and the parameterization of the directly plugged-in<br>System 82xx modules takes place via the STEP <sup>®</sup> 7 manager from Siemens<br>in form of a virtual Profibus system.<br>For the Profibus interface is software standardized, ADAM is able to<br>guarantee the availability of the complete functions of the System 82xx<br>modules by including the GSD-file in the manager.                                                                                                                                       |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steps of the<br>CPU 821xDP<br>configuration                                              | <ul> <li>To be compatible with the STEP<sup>®</sup>7 projecting tool from Siemens, you have to execute the following steps:</li> <li>Project the CPU 315-2DP with DP master system (address 2).</li> <li>Add Profibus slave "DP8000" with address 1.</li> <li>Include the CPU type 821xDP at plug-in location 0 of the slave system.</li> <li>Adjust the Profibus parameters of the CPU 821xDP.</li> <li>Include directly plugged-in periphery modules at the plug-in locations 132.</li> <li>Transfer project via MPI into the CPU 821xDP</li> </ul> |
| Steps of the<br>master<br>configuration                                                  | <ul> <li>Project CPU with DP master system (address 2).</li> <li>Add Profibus slave 821xDP (GSD-file required).</li> <li>Fix the Profibus input and output areas starting with plug-in location 0.</li> </ul>                                                                                                                                                                                                                                                                                                                                         |

#### Reference between master and slave

The following picture illustrates the project engineering at the master and the slave:



| Project<br>engineering of<br>the CPU 821xDP      | The CPU 821xDP is configured in the STEP <sup>®</sup> 7 Manager from Siemens.<br>Following requirements have to be fulfilled before configuration:                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preconditions                                    | <ul> <li>STEP<sup>®</sup>7 Manager from Siemens is installed.</li> <li>GSD-file has been integrated in the hardware configurator of Siemens.</li> <li>There is a possibility for data transfer between PU and CPU.</li> </ul>                                                                                                                                                                                                                                                                                  |
| Install hardware<br>configurator from<br>Siemens | The hardware configurator is part of the STEP <sup>®</sup> 7 projecting tool from Siemens for project engineering. The modules parameterizable via this tool are in the hardware catalog of this tool.<br>For the deployment of the Profibus-DP slaves of the Systems ADAM 8xxx from Advantech you have to include the modules via an GSD-file from Advantech in the hardware catalog.                                                                                                                         |
| Include GSD-file                                 | Start the hardware configurator from Siemens. For including a new GSD-<br>file, no project may be opened.<br>Open the GSD-file window under <b>Options</b> > <i>Install new GSD-file</i> . Insert the<br>delivered data device and select the wanted GSD-file. Via <open> you<br/>install the GSD-file.<br/>Normally you'll find the ADAM modules included via GSD-file in the<br/>hardware catalog under <i>Profibus-DP</i> &gt; <i>Additional Field devices</i> &gt; <i>I/O</i> &gt;<br/><i>ADAM</i>.</open> |

#### Create a virtual Profibus system

- Create a new System 300 project.
- Add a profile rail from the hardware catalog.
- Add the CPU 315-2DP (6ES7 315-3AF01-0AB0).
- You find the CPU with Profibus master in the hardware catalog under:

Simatic > CPU-300 > CPU 315-2DP > 6ES7 315-3AF01-0AB0.

- Assign the Profibus address 2 to your master.
- Click at DP and select the operating mode "DP master" under *Object properties*. Confirm your entry with OK.
- By clicking on "DP" with the right mouse button, the context menu opens. Choose "Add master system". Create a new Profibus subnet via NEW. The following picture shows the created master system:

| HW Config - [cpu (Configurat | ion) 315-2 DP ]     |                   |             |     | _                                                                                 |                 |
|------------------------------|---------------------|-------------------|-------------|-----|-----------------------------------------------------------------------------------|-----------------|
|                              |                     | 88 ▶?             |             |     |                                                                                   |                 |
| 1<br>2 CPU 315-2 DP          | zentrale            | Peripherie: DP ma | ster system | (1) | Profile Standard                                                                  | •               |
| A2         D7           3    |                     |                   |             |     | SIMATIC 300     ⊕                                                                 |                 |
| ✓ ✓                          |                     |                   |             | •   |                                                                                   |                 |
| Slot Module                  | Order number        | Firmware M        | I   G       | ) C | ⊕-      ☐ CPU 314     ⊕-      ☐ CPU 314 IFM                                       |                 |
| 1 2 CPU 315-2 DP X2 DP 2     | 6ES7 315-2AF01-0AB0 | 2                 | 1023        |     | ⊕- ☐ CPU 314C-2 DP     ⊕- ☐ CPU 314C-2 PP     ⊕- ☐ CPU 314C-2 PP     ⊕- ☐ CPU 315 |                 |
| 3<br>4<br>5                  |                     |                   |             |     | CPU 315-2 DP<br>                                                                  |                 |
| 7<br>8<br>9                  |                     |                   |             | =   |                                                                                   | <b>T</b>        |
|                              |                     |                   |             | +   | 6ES7 315-24F01-0AB0                                                               | ▶<br>₹ <u>≺</u> |
| Desc Chicae Ulate            |                     |                   |             |     | MPI + DP connections; for multi-tier<br>configuration up to 32 modules            | Cha             |
| Fless Fillto get Help.       |                     |                   |             |     |                                                                                   | ung             |

Project CPU 821xDP and modules To be compatible with the STEP®7 projecting tool from Siemens you have to include the CPU 821xDP explicitly like mentioned above.

- Add the System "ADAM\_CPU821x" to your subnet. The module is to find under PROFIBUS-DP > Additional Field devices > I/O > DP8000. Assign the Profibus address 1 to the DP slave.
- Place the CPU 821x-2BP01 from Advantech at the plug-in location 0 of the hardware configurator. **Plug-in location 0 is mandatory!**
- You may fix the data areas of the Profibus section in the CPU parameter window. More details are under "Include Profibus section".
- Include your System 82xx modules in the assembled order starting with plug-in location 1.
- If there is a DP master at the backplane bus, you have to include this at the concerning plug-in location, too. Here the configuration takes place via WinNCS from Advantech.
- Save your project.
- Transfer your project via MPI to the CPU 821xDP. Please regard the hints in chapter 1!

Including the Profibus section The Profibus section creates an image of its data area in the addressing space of the CPU. The assignment of the areas happens via the properties of the CPU 821xDP. Via a double-click at the CPU 821xDP you reach the dialog window for parameterization of the data areas for the Profibus slave. Details are to find in the chapter "DP slave parameters".

| operties - DP slave                    |                                       |
|----------------------------------------|---------------------------------------|
| Address / ID Parameter Assignment      |                                       |
| Parameters                             | Value                                 |
| –) – – – – – – – – – – – – – – – – – – | alarm : 3 ms input delay              |
| —) ch 1 : function/input delay         | disabled                              |
| —) ch 2 : function/input delay         | counter : pulse                       |
| –) ch 3 : function/input delay         | disabled                              |
| -E ch 0 : edge selection               | alarm/counter at rising edge          |
| - E ch 1 : edge selection              | alarm/counter disabled                |
| - E ch 2 : edge selection              | alarm/counter at both edges           |
| —                                      | alarm/counter disabled                |
| - 🗐 HSC periphery address              | 150                                   |
| –) HSC direction ch: 0                 | none                                  |
| –≝ HSC direction ch: 1                 | none                                  |
| HSC direction ch: 2                    | up                                    |
| HSC direction ch: 3                    | none                                  |
| HSC upper/lower limit ch: 0            | 0                                     |
| – HSC upper/lower limit ch: 1          | 0                                     |
| – ≝ HSC upper/lower limit ch: 2        | 10256891                              |
| –  HSC upper/lower limit ch: 3         | 0                                     |
| - interrupt type                       | none                                  |
|                                        | · · · · · · · · · · · · · · · · · · · |
|                                        |                                       |
| ОК                                     | Cancel Help                           |
|                                        |                                       |



#### Attention!

Please regard, that the lengths of the data areas are identical at the master and the slave project engineering.

Due to the restrictions imposed by the system, the memory areas of the CPU that are used for the Profibus section may only be displayed in the CPU configuration window.

In the following all relevant dialog windows of the slave project engineering are shown. Here you may also see, how to include your System ADAM 8xxx:

| 44 |             |                                                                                                                 |         |              |                  |                                                                                                        | - D × Profile               | Standard                                                                                                                                             | 7 |
|----|-------------|-----------------------------------------------------------------------------------------------------------------|---------|--------------|------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | CPU 315-2 D |                                                                                                                 | PROP    | 18US(1) OP m | aster system (1) |                                                                                                        | 4                           | 8214-28103 CPU 8214NET<br>8214-28103 CPU 82140PM<br>8214-2CM01 CPU 82140PM<br>8215-18A01 CPU 8215<br>8215-28P01 CPU 82150P<br>8215-28P51 CPU 82150PR |   |
| ł  |             |                                                                                                                 |         | L            |                  | Properties - DP slave                                                                                  | and the second second       |                                                                                                                                                      | 2 |
| 1  |             |                                                                                                                 |         |              |                  | Address / ID Parameter Assignment                                                                      | 1                           |                                                                                                                                                      |   |
| t  |             |                                                                                                                 |         |              |                  | Parameter Name                                                                                         | Value                       |                                                                                                                                                      |   |
|    |             | The second se |         | 1            |                  | and the set of the set                                                                                 | 10                          |                                                                                                                                                      |   |
| 0  | ADAM_CPU82  | ix<br>Order number<br>Contextition CPU (                                                                        | (Addecs | Q Address    | Connert          | dpich 1 output adi.<br>dpich 1 output ien<br>dpich 1 pin adi.<br>dpich 1 dag adi.<br>dpich 1 tati adi. | 4<br>4<br>1023<br>1023<br>5 |                                                                                                                                                      |   |
| +  | 101         | 0221-10F00 DI0xD                                                                                                | 0       | 0            |                  | - option il Phonibos of addett                                                                         | 9                           |                                                                                                                                                      |   |
| t  | 0           | 8208-10 P01 IM882                                                                                               | -       | 10           |                  |                                                                                                        |                             |                                                                                                                                                      |   |
| Ŧ  |             |                                                                                                                 |         |              |                  |                                                                                                        |                             |                                                                                                                                                      |   |
| t  |             |                                                                                                                 | 10      |              |                  |                                                                                                        |                             |                                                                                                                                                      |   |
| +  |             |                                                                                                                 |         | -            |                  |                                                                                                        |                             |                                                                                                                                                      |   |
| t  |             |                                                                                                                 |         |              |                  |                                                                                                        |                             | 1                                                                                                                                                    |   |
| T  |             |                                                                                                                 |         | -            |                  |                                                                                                        |                             | -                                                                                                                                                    |   |
| +  |             |                                                                                                                 |         |              |                  | -                                                                                                      | Marchanester   Charace      | and I                                                                                                                                                |   |
|    |             | 1                                                                                                               |         |              |                  |                                                                                                        | Charge -                    | -une                                                                                                                                                 |   |
| +  |             |                                                                                                                 |         | -            |                  | - (m)                                                                                                  | 1                           | Carrier I Hate                                                                                                                                       | f |
| t  |             |                                                                                                                 |         | -            |                  |                                                                                                        |                             | Carlos Inte                                                                                                                                          | 2 |
| -  |             | N 234                                                                                                           |         | Ŵ            | 10               | 5-15                                                                                                   |                             | -                                                                                                                                                    | 0 |

#### View in the hardware configurator from Siemens

Configuration in<br/>the leadingTo<br/>incDP master•

To include the CPU 821xDP into a leading master system, the GSD-file included in the package is required.

- Start your configuration program and configure the Profibus-DP master that will be the leader of your CPU 821xDP.
- Add a DP slave of the station type "CPU821xDP". This is to find in the hardware catalog under Profibus-DP > Additional field devices > I/O > ADAM\_CPU821xDP.
- Assign a valid Profibus address.
- Assign memory space from the address area of the CPU to the Profibus section in form of "modules" for in- and output.
- Save your project and transfer it into the CPU of your master system.

In the following the relevant dialog windows for the master configuration are shown:

| UW Config - SIMATIC 300(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ <del>_</del> <del>/</del> ×                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station Edit Insert PLC View Options Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |
| MSIMATIC 300(1) (Configuration) 821xxDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Profile Standard                                                                                                                                                                                                              |
| OUB         PROFIBUS(1): DP master system (1)           1         0.02.Massor           3         0.02.Massor           6         (1) ADAM_           6         (1) ADAM_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROFIBUS DP     Additional Field Devices     I/0     U/0 MANAGER     ADAM_CPU32180P     ADAM_CPU32180P     ADAM_CPU311x     ADAM_CPU321x     ADAM_CPU321x     ADAM_CPU321x     ADAM_CPU321x     ADAM_CPU321x     ADAM_CPU321x |
| Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - DP slave                                                                                                                                                                                                                    |
| Address /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |
| (3) ADAM_CPU821xDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dutput 💌 Direct Entry                                                                                                                                                                                                         |
| Slot Module / Order number I Address Q Address Comment Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | Diff     Diff     Diff       Image Partition     No.1     Image Partition                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |
| 14<br>15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Menufacturer specific data,<br>maximum 14 bytes hexadecimal,<br>separated by comma or blank)                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cancel Help                                                                                                                                                                                                                   |
| Press F1 to get Help.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chg                                                                                                                                                                                                                           |



#### Note!

If your DP master system is a System 82xx module from Advantech, you may parameterize the directly plugged-in modules by including a "DP8000" slave system.

To enable the ADAM CPU to recognize the project as central system, you have to assign the Profibus address 1 to your slave system!

### **DP slave parameters**

Outline

With an "intelligent slave", the Profibus section writes its data areas into the memory area of the CPU 821xDP. The assignment of the areas happens via the properties of the CPU 821xDP.

The input resp. output areas have to be supported with an according PLC program.



**Release CPU** 

areas

#### Attention!

The length values for in- and output area have to be identical to the byte values of the master configuration. Otherwise there is no Profibus communication possible and the master notes a slave failure!



As soon as you set a length value to 0, the concerning data does not occupy any memory space in the CPU.

By assigning 255 (memory limit) at the parameters PRN, DIAG and STAT you may also release memory space in the CPU.

# Description of the parameter data

Via a double-click at the CPU 821xDP in the hardware configurator from Siemens, the following dialog window for configuring the Profibus slave data areas appears:

| Parameters                      | Value                        |   |
|---------------------------------|------------------------------|---|
| –≝ ch 0 : function/input delay  | alarm : 3 ms input delay     |   |
| — 🗐 ch 1 : function/input delay | disabled                     |   |
| — 🗐 ch 2 : function/input delay | counter : pulse              |   |
| — 🗐 ch 3 : function/input delay | disabled                     |   |
| —                               | alarm/counter at rising edge |   |
| —                               | alarm/counter disabled       |   |
| —Ⅲ ch 2 : edge selection        | alarm/counter at both edges  |   |
| –) ch 3 : edge selection        | alarm/counter disabled       |   |
| —                               | 150                          | _ |
| – HSC direction ch: 0           | none                         |   |
| – <u>≔</u> HSC direction ch: 1  | none                         |   |
| – <u>≔</u> HSC direction ch: 2  | up                           |   |
| –≝ HSC direction ch: 3          | none                         |   |
| – HSC upper/lower limit ch: 0   | 0                            |   |
| –≝ HSC upper/lower limit ch: 1  | 0                            |   |
| –≝ HSC upper/lower limit ch: 2  | 10256891                     |   |
| – HSC upper/lower limit ch: 3   | 0                            |   |
| — interrupt type                | none                         | Ĩ |

 input adr, len
 Address, from where on the data coming from Profibus shall be stored in the CPU, together with the according length. The length value of 0 occupies no CPU memory space for the input area.
 output adr, len
 Address, from where on the data are stored that shall be send via Profibus. here also you predefine the data length via *len*. The length value of 0 occupies no CPU memory space for the input area.

**prm. adr.** The parameter data are an extract of the parameter telegram. The parameter telegram is created during the master configuration and is send to the slave when:

- the CPU 821xDP is in start-up
- the connection between CPU 821xDP and master has been interrupted, like e.g. short-time release of the bus connector.

A parameter telegram exists of Profibus-specific data (bus parameters) and user specific data, where at the CPU 821xDP the in- and output bytes are defined.

The user specific data (Byte 7...31) is mapped into the memory area of the CPU with a fixed length of 24Byte, starting from the address fixed under *prm*.

Thus you may proof the parameters your slave is getting from the master.

The various diagnostic functions of Profibus-DP allow a fast error detection diag. adr. and localization. The diagnostic messages are transferred via the bus and collected at the master. The CPU 821xDP is sending diagnostic data at request from the master or in case of an error. The diagnostic data consists of: Norm diagnostic data (Byte0...5), Device-related diagnostic data (Byte6...10) User-specific diagnostic data (Byte11...15) Via diag you define the start address, from where on the 6Byte userspecific diagnostic data shall be stored in the CPU. You may initiate and influence diagnostics by controlled access to this area. Note! More detailed information about the structure and the control possibilities on diagnostic messages are to find under "Diagnostic functions". The recent state of the Profibus communication is readable from a 2Byte stat. adr. status area in the periphery address area of the CPU, starting from the status address. Note! More detailed information about the structure of a status message is to find under "Status message internal to CPU". Profibus DP Via this parameter you assign a Profibus address to your Profibus system. address As soon as you assign the length 0, the according data don't occupy any **Release CPU** memory space in the CPU. areas You may also release CPU memory space by assigning the address range limit (255 resp. 1023 for CPU firmware versions > 2.2.0) to the parameters prn, diag and stat.

## **Diagnostic functions**

#### Outline

Profibus-DP is provided with an extensive set of diagnostic functions that may be used to locate problems quickly and effectively. Diagnostic messages are transferred via the bus and collected by the master.

The CPU 821xDP transmits diagnostic data when requested by the master or when an error occurs. Since a portion of the diagnostic data (Byte11...15) is located in the peripheral address area of the CPU, you may start the diagnostics and modify the diagnostic data. Diagnostic data consists of:

- standard diagnostic data (Byte 0.. 5),
- equipment related diagnostic data (Byte 6...15).

#### **Structure** The structure of the diagnostic data is as follows:

| Standard diagnostic data |                     |
|--------------------------|---------------------|
| Byte 0                   | Station status 1    |
| Byte 1                   | Station status 2    |
| Byte 2                   | Station status 3    |
| Byte 3                   | Master address      |
| Byte 4                   | Ident number (low)  |
| Byte 5                   | Ident number (high) |

Device related diagnostic data

| Byte 6          | Length and code of device related<br>diagnostics                                                            |
|-----------------|-------------------------------------------------------------------------------------------------------------|
| Byte 7          | Equipment related diagnostic messages                                                                       |
| Byte 8 Byte 10  | reserved                                                                                                    |
| Byte 11 Byte 15 | User-specific diagnostic data                                                                               |
|                 | is mapped into the peripheral<br>addressing range of the CPU and may<br>be modified and send to the master. |

**Standard diagnostic data diagnostic data** 

The slave standard diagnostic data have the following structure:

| Byte | Bit 7 Bit 0                                 |
|------|---------------------------------------------|
| 0    | Bit 0: fixed at 0                           |
|      | Bit 1: slave not ready for data transfer    |
|      | Bit 2: configuration data is not identical  |
|      | Bit 3: slave got extern diagnostic data     |
|      | Bit 4: slave does not provide this function |
|      | Bit 5: fixed at 0                           |
|      | Bit 6: wrong parameterization               |
|      | Bit 7: fixed at 0                           |
| 1    | Bit 0: slave needs new parameterization     |
|      | Bit 1: statistical diagnosis                |
|      | Bit 2: fixed at 1                           |
|      | Bit 3: response control active              |
|      | Bit 4: freeze command received              |
|      | Bit 5: sync command received                |
|      | Bit 6: reserved                             |
|      | Bit 7: fixed at 0                           |
| 2    | Bit 0Bit 6: reserved                        |
|      | Bit 7: Diagnostic data overflow             |
| 3    | Master address after parameterization       |
|      | FFh: Slave is without parameterization      |
| 4    | Ident number High Byte                      |
| 5    | Ident number Low Byte                       |

**Device related diagnostic data diagnostic data the device related diagnostic data provide detailed information on the slave and the peripheral modules. The length of the device related diagnostic data is fixed at 10Byte.** 

| 1115 | User specific diagnostic data that are stored behind the diagnostic status byte in the process picture of the CPU. This data may be overwritten and forwarded to the master.                                                                                                                                                                                          |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 810  | reserved                                                                                                                                                                                                                                                                                                                                                              |
|      | <ul> <li>12h: Error: data length parameters</li> <li>13h: Error: data length configuration data</li> <li>14h: Error: configuration entry</li> <li>15h: Error: VPC3 buffer calculation</li> <li>16h: Error: missing configuration data</li> <li>17h: Error: Difference DP parameterization and configuration</li> <li>40h: User defined diagnostic is valid</li> </ul> |
| 7    | Bit 0Bit 7: equipment related diagnostic message                                                                                                                                                                                                                                                                                                                      |
|      | Bit 67: Code for equipment related diagnostics<br>00: Code 00 (fixed)                                                                                                                                                                                                                                                                                                 |
| 6    | Bit 05: length equipment related diagnostic data<br>001010: length 10Byte (fixed)                                                                                                                                                                                                                                                                                     |
| Byte | Bit 7Bit 0                                                                                                                                                                                                                                                                                                                                                            |

# Starting diagnostics

In case of a diagnostic action the contents of Byte 11...15 of the equipment related diagnostic data will be transferred to the process image of the CPU and get a status byte in front.

Where this diagnostic block with a length of 6Byte is located in the process image is definable via the CPU parameters.

You start diagnostics by means of a status change from  $0 \rightarrow 1$  in the diagnostic status byte. This transmits the respective diagnostic message to the master. A status of 0000 0011 is ignored!

The diagnostic block of the CPU has the following structure:

| Byte | Bit 7Bit 0                                         |
|------|----------------------------------------------------|
| 0    | diagnostic status byte:                            |
|      | Bit 0: user specific diagnostic data               |
|      | 0: invalid diagnostic data                         |
|      | 1: valid diagnostic data (starting a diagnosis)    |
|      | Bit 1: delete diagnostic                           |
|      | 0: diagnostic deletion invalid                     |
|      | 1: diagnostic deletion valid                       |
|      | Bit 2Bit 7: reserved                               |
| 15   | Bit 0Bit 7: user specific diagnostic data          |
|      | equal to Byte 1115 of equipment related diagnostic |
|      |                                                    |

## Internal status messages to CPU

The current status of the Profibus communication procedure is obtainable from the status messages that are mapped into the peripheral addressing range of the CPU. Status messages consist of 2Byte with the following structure:



#### Parameter

| Clear Data                           | The transmit and receive buffers are cleared when an error occurs.                                                                                                                                                                                                     |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reserved                             | These bits are reserved for future use.                                                                                                                                                                                                                                |
| User Parameter                       | Indicates validity of the parameter data. Parameter data is entered into the master configuration tool.                                                                                                                                                                |
| Response<br>monitoring (active)      | Indicates the status of the activation of the response monitor in the leading<br>Profibus master. The slave will terminate communications when the<br>response monitoring time is exceeded.                                                                            |
| Profibus data<br>exchange status     | Status indicator for master communications. A bad configuration or bad<br>parameters will terminate communications and the respective error is<br>indicated by means of this bit.                                                                                      |
| Parameter<br>configuration           | Displays the status of the configuration data. The length of the configuration data and the number of parameter bytes is analyzed. The configuration is only accepted as being correct if these are equal and if no more than 31Byte of parameter data is transferred. |
| Configuration                        | Status indicator of the configuration data that are received from the Profibus master. You define the configuration by means of the master configuration tool.                                                                                                         |
| Response<br>monitoring<br>(Watchdog) | Indicates the status of the response monitor in the Profibus master. This location contains an error when the response monitor has been activated and the required response time has been exceeded in the slave.                                                       |
| Hardware<br>monitoring               | This bit is set if the Profibus controller in the CPU 821xDP is defective. In this case you should contact the Advantech.                                                                                                                                              |
| DP data                              | Any transfer error on the Profibus will set this error.                                                                                                                                                                                                                |

## **Profibus Installation guidelines**

## Profibus in general

- The ADAM Profibus-DP network must have a linear structure.
- Profibus-DP consists of at least one segment with a minimum of one master and one slave.
- A master must always be used in conjunction with a CPU.
- Profibus supports a max. of 125 stations.
- A max. of 32 stations are permitted per segment.
- The maximum length of a segment depends on the data transfer rate:

| 9.6187.5kBaud          | $\rightarrow$ | 1000m |
|------------------------|---------------|-------|
| 500kBaud               | $\rightarrow$ | 400m  |
| 1.5MBaud               | $\rightarrow$ | 200m  |
| 312MBaud $\rightarrow$ | 100m          |       |

- A maximum of 10 segments may be established. Segments are connected by means of repeaters. Every repeater is regarded as a station.
- All the stations communicate at the same baudrate. Slaves adapt automatically to the baudrate.
- The bus has to be terminated at both ends.
- Masters and slaves may be installed in any sequence.



#### Note!

When using optical participants, you should place a cover over the socket for the next station at the end of the bus, to avoid eye damage and to eliminate the chance of disturbance by external radiation. Use the rubber inserts for this purpose by inserting them into the two remaining openings of the FO-connector.

# Assembly and installation into Profibus

- Assemble your Profibus system complete with the respective modules.
- Set the address of your bus coupler to an unused address.
- Transfer the GSD-file supplied with the modules into your configuration system and configure the system.
- Transfer the configuration into the master.
- Connect the Profibus cable to the coupler and turn the power supply on.



#### Note!

The Profibus cable has to be terminated with a terminating resistor of the characteristic impedance of the cable. Please ensure to install a terminating resistor at the last station on the bus.

**Transfer medium** Profibus employs a screened twisted two-core cable as communication medium, which is based on the RS485 interface.

The RS485 interface employs differential voltages. For this reason it is less sensitive to electrical interference than a voltage or a current based interface. You may configure networks with linear as well as with tree geometry.

Your ADAM CPU 821xDP carries a 9pin socket. You connect the Profibus coupler directly to your Profibus network as a slave by means of this connector.

Every segment supports a maximum of 32 stations. Different segments are connected by means of repeaters. That maximum length of a segment depends on the data communication rate.

The rate of data transfer of a Profibus-DP link is set to a value between 9.6kBaud and 12MBaud. Slaves are configured automatically. All the stations on the network communicate at the same baudrate.

The structure of the bus is such that stations may be inserted or removed without repercussions or to commission the system in different stages. Extensions to the network do not influence those stations that have already been commissioned. New stations or stations that have failed are detected automatically.

The picture shows a Profibus connection under RS485 with indicated terminating resistors:



#### Bus connector



In systems with more than two stations all partners are wired in parallel. For that purpose the bus cable must be connected in a continuous uninterrupted loop.

Via the order number ADAM-8972-0DP10 you may order the bus connector "EasyConn". This is a bus connector with switchable terminating resistor and integrated bus diagnosis.



To connect this connector please use the standard Profibus cable type B according to EN50170.

Under the order no. ADAM-8905-6AA00 Advantech offers the "EasyStrip" deisolating tool, that makes the connection of the EasyConn much easier.



all in mm



#### Attention!

The bus cable has always to be terminated with the ripple resistor to avoid reflections and therefore communication problems!

#### Termination

The bus connector is provided with a switch that may be used to activate a terminating resistor.



#### Attention!

The terminating resistor is only effective, if the connector is installed at a slave and the slave is connected to a power supply.

#### Note!

A complete description of installation and deployment of the terminating resistors is delivered with the connector.

#### Examples for Profibus networks

#### One CPU and several master interfaces

The CPU should have a short cycle time to ensure that the data of slave No.5 (at the right) is always up to date. This scheme is only viable if the slower line (at the left) is connected to slaves that do not require up to date data. This portion of the line should also not be connected to modules that issue alarms.



#### Multi master system

More than one master and multiple slaves connected to one bus:



## Commissioning

#### Outline

- Install the CPU 821xDP.
- Configure the CPU 821xDP in your master system.
- Configure the I/O periphery that is connected to the backplane bus.
- Connect the CPU 821xDP to your Profibus.
- Turn on the power supply.
- Transfer your project to the CPUs.

Installation Assemble the CPU 821xDP with the required peripheral modules. Do not exceed the maximum current capacity of your power supply.



#### Attention!

The bus cable has always to be terminated with the ripple resistor to avoid reflections and therefore communication problems!

Configure your CPU 821xDP in your master system. You may use the Configuration in Advantech WinNCS package for this purpose. To configure the System the master system 82xx Profibus slave modules from Advantech, you need to include the according GSD-file into the configuration tool from Siemens.

The System 82xx peripheral modules that are connected with the CPU Configuration 821xDP directly via the backplane bus are automatically mapped into the CPU 821xDP and CPU address area. You may alter the address allocation in the hardware I/O periphery configurator from Siemens at any time.

Voltage supply The CPU 821xDP has an integrated power supply that has to be provided with DC 24V. Via the voltage supply not only the CPU is provided with voltage but also the bus coupler and, via the backplane bus, the peripheral modules. Please regard, that the integrated power supply may provide the backplane bus with max. 3A.

Profibus and backplane bus are galvanically separated from each other.

**Transfer project** The transfer of the hardware configuration into the CPU takes place via MPI.

used with the ADAM CPUs of the Systems 8xxx.

- Connect your PU res. the PC via MPI with the CPU.
   If your programming device has no MPI slot, you may use the Advantech Green Cable to establish a serial point-to-point connection.
   The Green Cable has the order no. ADAM-8950-0KB00 and only be
- Configure the MP interface of your PC.
- With **PLC** > *Load to module* in your projecting tool, you transfer your project into the CPU.
- For the additional security copy of your project on MMC, you plug-in a MMC and transfer the user application to the MMC via PLC > Copy RAM to ROM.

During write operation the MC-LED on the CPU blinks. Due to the system, the successful writing is signalized too soon. The write command has only been completed, when the LED extinguishes.



#### Attention!

Please regard the hints for deploying the Green Cable and the MP<sup>2</sup>I jack in chapter 1.

Initialization phaseThe Profibus coupler executes a self-test routine after it is powered on. On<br/>this occasion it checks the internal operations, the backplane bus<br/>communication and the Profibus communication.<br/>When the test is completed successfully, the parameters of the CPU are<br/>read and the Profibus slave parameters are checked.<br/>After the successful test, the bus coupler status changes to "READY".<br/>If the bus coupler detects communication errors on the backplane bus, its<br/>status first changes to STOP and after a delay of 2 seconds it is initialized<br/>again. As soon as the test is completed successfully, the RD-LED blinks.<br/>The DE-LED is turned on when communication is started.

## Example

**Objective** This example is intended to show the communication between a master CPU 8214DPM and a slave CPU 8214DP.

The counters are to communicate via the Profibus and to be displayed at the output module of the respective partner.

**Detailed description of the objective** The CPU 8214DPM shall count from FFh...00h and transfer the count cyclically into the output area of the Profibus master. The master has then to transfer this value to the slave of the CPU 821xDP.

The value received shall be saved in the peripheral input area of the CPU and monitored at the output module (at address 0) via the backplane bus.

On the other hand, the CPU 8214DP should count from 00h to FFh. This count shall also be saved in the output area of the CPU slave and be transferred to the master via Profibus.

This value shall be monitored at the output module (address 0) of the CPU 8214DPM.

|                    | CPU 821x DPM D0 8<br>Z1<br>Adr.:4<br>Counter Z1:<br>FFh 00h | Sla<br>CPU 82<br>Z2<br>Z2<br>Coun<br>Obh | AVE                     |
|--------------------|-------------------------------------------------------------|------------------------------------------|-------------------------|
| Configuration data | CPU 821xDPM                                                 |                                          |                         |
|                    | Counter: MB 0 (FFh00h)                                      |                                          |                         |
|                    | Profibus address:                                           | 4                                        |                         |
|                    | Input area:                                                 | Address 10                               | length: 2 Byte          |
|                    | Output area:                                                | Address 20                               | length: 2 Byte          |
|                    | CPU 821xDP                                                  |                                          |                         |
|                    | Counter: MB 0 (00hFFh)                                      |                                          |                         |
|                    | Profibus address:                                           | 3                                        |                         |
|                    | Input area:                                                 | Address 30                               | length: 2 Byte          |
|                    | Output area:                                                | Address 40                               | length: 2 Byte          |
|                    | Parameter data:                                             | Address 50                               | length: 24 Byte (fixed) |
|                    | Diagnostic data:                                            | Address 60                               | length: 6 Byte (fixed)  |
|                    | Status data:                                                | Address 100                              | length: 2 Byte (fixed)  |
### Configuration of CPU 821xDPM (Master)

To be compatible to the STEP<sup>®</sup>7 projecting tool from Siemens, you have to execute the following steps for the System 82xx:

- Start the hardware configurator from Siemens.
- Configure a CPU 315-2DP with DP master system (address 2).
- Add a Profibus slave ADAM 821x at address 1.
- Include the CPU **8214-2BM01** at the plug-in location 0 of the slave system.
- Include the output module 8222-1BF00 at plug-in location 1.

For linking-up the CPU 8214DP you have to execute the following steps after including the GSD-file:

- Add the Profibus slave "CPU82xxDP" (address 3). The DP slave is in the hardware catalog under: *Profibus-DP > Additional field devices > I/O > ADAM > ADAM\_CPU82xxDP*.
- Assign memory areas of the CPU to the in- and output of the Profibus-DP master section in form of Byte blocks. For this, you have to include the "2Byte output" element on plug-in location 0 and select the output address 20. Include the "2Byte input" element on plug-in location 1 and select the input address 10.
- Save your project.

### Including directly connected modules

### Including CPU 821xDP

Configuration CPU 821xDP (Slave) To be compatible to the STEP<sup>®</sup>7 projecting tool from Siemens, you have to execute the following steps for the System 82xx:

- Start the hardware configurator from Siemens.
- Configure a CPU 315-2DP with DP master system (address 2).
- Add a Profibus slave "DP8000" at address 1.
- Include the CPU **8214-2BP01** at the plug-in location 0 of the slave system.
- Include the output module 8222-1BF00 at plug-in location 1.

|                       |                       | 3 D 22          | 12               |         |   |                                                                                                 |
|-----------------------|-----------------------|-----------------|------------------|---------|---|-------------------------------------------------------------------------------------------------|
| SIMATIC 300(1) (Co    | nliguration) 021xxxDP |                 |                  |         |   | Pedle Standard                                                                                  |
| 1 CPU 315             | PROFIDUS              | i(1): DP master | system (1)       | _       | 2 | ADAM_CPU8216     ADAM_CPU8216     ADAM_CPU8116     ADAM_CPU8116     ADAM_DP82x     ADAM_CPU811* |
| 3<br>4<br>5<br>6<br>7 |                       | (1) ACM         | MM_<br>4 CPU821x |         |   | AD4M_DPU821x     Universal mod     8208 10P01     8208 10P01     8208 10A11     8214 18A01      |
|                       |                       |                 |                  |         | - | 8214-28P01 0<br>8214-28P51 0                                                                    |
|                       |                       |                 |                  |         |   | 8214-28501 0                                                                                    |
|                       |                       | _               |                  |         |   | 8214-29101 0                                                                                    |
|                       | n                     |                 |                  |         |   | 8214-29M011                                                                                     |
| (I) ALASS_OPOIL       |                       |                 |                  |         |   | 8214-2CM01                                                                                      |
| Slot Module /         | Order number          | Address         | Q Address        | Comment |   | 8215/38P01 0                                                                                    |
| 0 0                   | 8214-28P01 CPU 8214DP |                 |                  |         |   | 8215/28P01 0                                                                                    |
| 1 000                 | 8222-18F00 D08/0C24V  |                 | 0                |         |   | E215-20501 0                                                                                    |
| 2                     |                       |                 |                  |         |   | - B215-20101 0                                                                                  |
| 3                     |                       |                 |                  |         |   | - 0215-20M01                                                                                    |
| 4                     |                       |                 |                  |         |   | - 8215-2CM01                                                                                    |
| 5                     |                       | -               |                  |         |   | - 0216-10A01 0                                                                                  |
| 6                     |                       | -               | _                |         |   | - 0216-20P01 0                                                                                  |
| 0                     |                       | -               |                  |         |   | - 0216-20P51 0                                                                                  |
| 9                     |                       | -               | _                |         |   | 0216-20501 0                                                                                    |
| 10                    |                       | -               |                  |         |   | 1216-201010                                                                                     |
| 11                    |                       |                 |                  |         |   | 1016-20M01                                                                                      |
| 12                    |                       |                 |                  |         |   | 8221-106000                                                                                     |
| 13                    |                       |                 |                  |         |   | 6221-18F100                                                                                     |
| 14                    |                       |                 |                  |         |   | 6221-18F20.0                                                                                    |
|                       |                       |                 |                  |         |   | - 0221-10F50C                                                                                   |
| 15                    |                       |                 |                  |         | × | 0 071 10U107                                                                                    |
| 15<br>16              |                       |                 |                  |         |   |                                                                                                 |
| 15                    |                       |                 |                  |         |   |                                                                                                 |

 Choose the following parameters in the parameter window of the CPU 8214-2BP01:

| Parameters                     | Value |
|--------------------------------|-------|
| Station parameters             |       |
| 🖻 🔄 Device-specific parameters |       |
| ⊢≝ dps ch 1: input adr.        | 30    |
| ⊢⊞ dps ch 1: input len.        | 2     |
| ⊢≝) dps ch 1: output adr.      | 40    |
| ⊢≝i dps ch 1: output len.      | 2     |
| ⊢≝idps ch 1: prm. adr.         | 50    |
| ⊢≝i dps ch 1: diag. adr.       | 60    |
| –)≡i dps ch 1: stat. adr.      | 100   |
| —                              | 5     |
| └── ident. CPU-DP(fix)         | 187   |
| 🗄 🧰 Hex parameter assignment   |       |
|                                |       |

• Save your project.

Application program in the CPU 8214DPM has two tasks that are handled by two OBs:
to test communications by means of the control byte. Load the input byte from Profibus and transfer the value to the output module.
OB 1 (cyclic call)

| L<br>T               | B#16#FF<br>AB 20 | Control byte for Slave-CPU                                                                                |
|----------------------|------------------|-----------------------------------------------------------------------------------------------------------|
| L<br>L<br><>I<br>BEB | B#16#FE<br>EB 10 | Load control value 0xFE<br>Was the control byte transferred<br>correctly from the slave CPU?<br>No -> End |
|                      |                  | Data exchange via Profibus                                                                                |
| L                    | EB 11            | Load input byte 11 (output data                                                                           |
| Т                    | AB 0             | transfer to output byte 0                                                                                 |
| BE                   |                  |                                                                                                           |

• Read counter value from MB0, decrement, save in MB0 and put it out to CPU 214DP via Profibus.

OB 35 (timer-OB)

| L<br>L | MB<br>1 | 0  | C      | Counter            | from           | OxFF          | to          | 0x00         |    |
|--------|---------|----|--------|--------------------|----------------|---------------|-------------|--------------|----|
| -I     |         |    |        |                    |                |               |             |              |    |
| Т      | MB      | 0  |        |                    |                |               |             |              |    |
| Т      | AB      | 21 | Г<br>) | ransfer<br>input d | into<br>lata c | outp<br>f CPU | out<br>1214 | byte<br>1DP) | 21 |
| BE     |         |    |        | · 1                |                |               |             | ,            |    |

At this point the programming of the CPU 8214DPM is completed. The Profibus communication has also been defined for both sides.

Transfer your project into the CPU 8214DPM via MPI by means of the **PLC**-functions.

| Application<br>program in the<br>CPU 8214DP | <ul><li>As shown above, the ap handled by two OBs:</li><li>Load the input byte four output module.</li></ul> | oplication program in the CPU has two tasks that are from the Profibus slave and transfer the value to the                                                  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | OB 1 (cyclic call)                                                                                           |                                                                                                                                                             |
|                                             | L PEW 100<br>T MW 100                                                                                        | Load status data and save in flag word                                                                                                                      |
|                                             | UN M 100.5<br>BEB                                                                                            | Commissioning by the DP master occurred? No -> End                                                                                                          |
|                                             | U M 101.4<br>BEB<br>L B#16#FF<br>L PEB 30<br><>I<br>BEB                                                      | Valid receive data?<br>No -> End<br>Load control value and compare<br>to control byte<br>(1st input byte)<br>Received data does not contain<br>valid values |
|                                             | L B#16#FE<br>T PAB 40                                                                                        | Control byte for master-CPU                                                                                                                                 |
|                                             | т рер 31                                                                                                     | Load peripheral byte 31 (input                                                                                                                              |
|                                             | T AB 0                                                                                                       | data from Profibus slave) and<br>transfer into output byte 0                                                                                                |
|                                             | BE                                                                                                           |                                                                                                                                                             |

• Read counter value from MB0, increment, save into MB0 and put it out to CPU 821x via Profibus.

| OB 3    | 5 (time | er-OB)   |                                                                                          |
|---------|---------|----------|------------------------------------------------------------------------------------------|
| L       | MB      | 0        | Counter from 0x00 to 0xFF                                                                |
| L       | 1       |          |                                                                                          |
| +I<br>_ |         | <u> </u> |                                                                                          |
| Т       | MB      | 0        |                                                                                          |
| Т       | PAB     | 41       | Transfer counter value into<br>peripheral byte 41 (output data<br>of the Profibus slave) |
| BE      |         |          |                                                                                          |

# Chapter 7 Integrated OBs, SFBs and SFCs

Outline

Here you find the description of the integrated OBs, SFBs and SFCs of the ADAM PLC-CPUs from Advantech for STEP<sup>®</sup>7 from Siemens.

The information about the listed blocks is valid for the CPUs 811x, 821x and 851x.

Another part of the chapter are the ADAM specific SFCs that are exclusively used with ADAM CPUs.



### Note!

Please regard that some ADAM specific SFCs are only integrated in certain CPUs. For example, the SFCs for high-speed counter and pulse duration modulation are only integrated in the CPUs of the System 81xx.

The assignment of the according SFCs to the CPUs is to find in the subchapter "ADAM specific SFCs".

Here you'll also find hints for the description of the ADAM specific SFCs.

The following text describes:

- Overview over the integrated OBs, SFBs, SFCs
- ADAM specific SFCs and their inclusion
- SFCs for access to the MMC
- SFCs for the System 8xxx
- SFC for access to TD 200
- SFCs for direct access to page frame and page frame communication

| Content | Торіс                                                         | Page |
|---------|---------------------------------------------------------------|------|
|         | Chapter 7 Integrated OBs, SFBs and SFCs                       | 7-1  |
|         | Integrated OBs and SFBs                                       | 7-3  |
|         | Integrated standard SFCs                                      | 7-4  |
|         | ADAM specific SFCs                                            | 7-6  |
|         | Include ADAM library                                          | 7-7  |
|         | SFC 220 MMC_CR_F                                              | 7-8  |
|         | SFC 221 MMC_RD_F                                              | 7-10 |
|         | SFC 222 MMC_WR_F                                              | 7-11 |
|         | SFC 223 PWM                                                   | 7-12 |
|         | SFC 224 HSC                                                   | 7-14 |
|         | SFC 225 HF_PWM                                                | 7-16 |
|         | SFC 227 - TD_PRM                                              | 7-18 |
|         | SFC 228 - RW_KACHEL                                           | 7-20 |
|         | Page frame communication - Parameter                          | 7-22 |
|         | Page frame communication - Parameter transfer                 | 7-25 |
|         | Page frame communication - Source res. destination definition | 7-26 |
|         | Page frame communication - Indicator word ANZW                | 7-28 |
|         | Page frame communication - Parameterization error PAFE        | 7-35 |
|         | SFC 230 - SEND                                                | 7-36 |
|         | SFC 231 - RECEIVE                                             | 7-37 |
|         | SFC 232 - FETCH                                               | 7-38 |
|         | SFC 233 - CONTROL                                             | 7-39 |
|         | SFC 234 - RESET                                               | 7-40 |
|         | SFC 235 - SYNCHRON                                            | 7-41 |
|         | SFC 236 - SEND_ALL                                            | 7-42 |
|         | SFC 237 - RECEIVE_ALL                                         | 7-43 |
|         | SFC 238 - CTRL1                                               | 7-44 |

# **Integrated OBs and SFBs**

GeneralThe system program of the CPU 811x offers you some additional functions,<br/>that you may use by calling FBs, FCs or OBs. Those additional functions<br/>are part of the system program and don't use any work memory. Although<br/>the additional functions may be requested, they can not be read or altered.<br/>The calling of an additional function via FB, FC or OB is registered as block<br/>change and influences the nesting depth for blocks.

**Integrated OBs** The following organization blocks (OBs) are available:

| OB     | Description                                |
|--------|--------------------------------------------|
| OB 1   | Free cycle                                 |
| OB 10  | Clock alarm                                |
| OB 20  | Delay alarm                                |
| OB 35  | Prompter alarm                             |
| OB 40  | Process alarm                              |
| OB 80  | Cycle time exceeded or clock alarm run out |
| OB 82  | Diagnostic alarm                           |
| OB 85  | OB not available                           |
| OB 86  | Slave failure res. restart                 |
| OB 100 | Reboot                                     |
| OB 121 | Synchronous errors                         |
| OB 122 | Periphery error at n <sup>th</sup> access  |

**Integrated SFBs** The following system function blocks (SFBs) are available:

| SFB    | Label | Description                                         |
|--------|-------|-----------------------------------------------------|
| SFB 0  | CTU   | Count up                                            |
| SFB 1  | CTD   | Count down                                          |
| SFB 2  | CTUD  | Count up and down                                   |
| SFB 3  | TP    | Create pulse                                        |
| SFB 4  | TON   | Create turn-on delay                                |
| SFB 5  | TOF   | Create turn-off delay                               |
| SFB 32 | DRUM  | realize a step-by-step switch with maximum 16 steps |

# **Integrated standard SFCs**

### Standard SFCs

The following standard system functions (SFCs) are available:

| SFC    | Label     | Description                                                                            |
|--------|-----------|----------------------------------------------------------------------------------------|
| SFC 0  | SET_CLK   | Set clock                                                                              |
| SFC 1  | READ_CLK  | Read clock                                                                             |
| SFC 2  | SET_RTM   | Set operating time counter                                                             |
| SFC 3  | CTRL_RTM  | Start/stop operating time counter                                                      |
| SFC 4  | READ_RTM  | Read operating time counter                                                            |
| SFC 6  | RD_SINFO  | Read start information of the recent OB                                                |
| SFC 12 | D_ACT_DP  | Activation or deactivation of DP slaves                                                |
| SFC 13 | DPNRM_DG  | Read slave diagnostic data                                                             |
| SFC 14 | DPRD_DAT  | Read consistent user data (also from DP slaves $\rightarrow$ DP master FW $\ge$ V3.00) |
| SFC 15 | DPWR_DAT  | Write consistent user data (also to DP slaves $\rightarrow$ DP master FW $\geq$ V3.00) |
| SFC 20 | BLKMOV    | Copy variable inside work memory                                                       |
| SFC 21 | FILL      | Predefine field inside work memory                                                     |
| SFC 22 | CREAT_DB  | Create data block                                                                      |
| SFC 23 | DEL_DB    | Delete data block                                                                      |
| SFC 24 | TEST_DB   | Test data block                                                                        |
| SFC 28 | SET_TINT  | Set clock alarm                                                                        |
| SFC 29 | CAN_TINT  | Cancel clock alarm                                                                     |
| SFC 30 | ACT_TINT  | Activate clock alarm                                                                   |
| SFC 31 | QRY_TINT  | Request clock alarm                                                                    |
| SFC 32 | SRT_DINT  | Start delay alarm                                                                      |
| SFC 33 | CAN_DINT  | Cancel delay alarm                                                                     |
| SFC 34 | QRY_DINT  | Request delay alarm                                                                    |
| SFC 36 | MASK_FLT  | Mask synchronous error events                                                          |
| SFC 37 | DMASK_FLT | Demask synchronous error events                                                        |
| SFC 38 | READ_ERR  | Read event status register                                                             |
| SFC 41 | DIS_AIRT  | Delay alarm events                                                                     |
| SFC 42 | EN_AIRT   | Cancel alarm event delay                                                               |
| SFC 43 | RE_TRIGR  | Re-trigger cycle time surveillance                                                     |
| SFC 44 | REPL_VAL  | Transfer replacement value into ACCU1                                                  |
| SFC 46 | STP       | Switch CPU in STOP                                                                     |
| SFC 47 | WAIT      | Delay program processing additionally to delay time                                    |
| SFC 49 | LGC_GADR  | Search the plug-in location concerning to a logical address                            |
| SFC 50 | RD_LGADR  | Search all logical addresses of a block                                                |

continued ...

... continue standard SFCs

| SFC 51 | RDSYSST   | Read information from system state list                                                                       |
|--------|-----------|---------------------------------------------------------------------------------------------------------------|
| SFC 52 | WR_USMSG  | Write user entry into diagnostic buffer<br>(sending via MPI in preparation)                                   |
| SFC 54 | RD_DPARM  | Read predefined parameters                                                                                    |
| SFC 55 | WR_PARM   | Write dynamic parameters<br>(only for analog, digital blocks, FM350, CP340 / not possible via<br>Profibus)    |
| SFC 56 | WR_DPARM  | Write predefined parameters<br>(only for analog, digital blocks, FM350, CP340 / not possible via<br>Profibus) |
| SFC 57 | PARM_MOD  | Parameterize block<br>(only for analog, digital blocks, FM350, CP340 / not possible via<br>Profibus)          |
| SFC 58 | WR_REC    | Write record set<br>(only for analog, digital blocks, FM350, CP340 / not possible via<br>Profibus)            |
| SFC 59 | RD_REC    | Read record set<br>(only for analog, digital blocks, FM350, CP340 / not possible via<br>Profibus)             |
| SFC 64 | TIME_TICK | Read millisecond timer                                                                                        |
| SFC 65 | X_SEND    | Send data to external partner                                                                                 |
| SFC 66 | X_RCV     | Receive data from external partner                                                                            |
| SFC 67 | X_GET     | Read data from external partner                                                                               |
| SFC 68 | X_PUT     | Write data to external partner                                                                                |
| SFC 69 | X_ABORT   | Interrupt connection to external partner                                                                      |

# **ADAM specific SFCs**

**General** The integrated SFCs are programmed in Assembler and for this they have a fast processing time. They do not occupy space in the internal program memory.

The integrated blocks are called in the user application.

The following pages show the ADAM specific blocks that may be called for special functions in the control application.

Assignment tableFor not every SFC is integrated in every CPU family, this table shows theSFC  $\leftarrow \rightarrow$  CPUassignment between SFC and CPU.

The first number specifies the CPU family, e.g. 811x means: CPU 811x.

| SFC     | Label     | Description                                                                     | 811x | 821x         | 851x         |
|---------|-----------|---------------------------------------------------------------------------------|------|--------------|--------------|
| SFC 220 | MMC_CR_F  | Create file on MMC                                                              | 1    | 1            | ✓            |
| SFC 221 | MMC_RD_F  | Read file on MMC                                                                | 1    | ✓            | ✓            |
| SFC 222 | MMC_WR_F  | Write to file on MMC                                                            | 1    | ✓            | ✓            |
| SFC 223 | PWM       | Parameterize pulse duration modulation                                          | 1    |              |              |
| SFC 224 | HSC       | Parameterize high-speed counter                                                 | 1    |              |              |
| SFC 225 | HF_PWM    | Parameterize HF pulse duration modulation (<br>up to 50kHz )                    | 1    |              |              |
| SFC 227 | TD_PRM    | Parameterization for TD200 communication                                        | 1    | $\checkmark$ | ✓            |
| SFC 228 | RW_Kachel | Read/write page frame                                                           |      | 1            | ✓            |
| SFC 230 | Send      | Send via page frame (page frame comm.)                                          |      | 1            | ✓            |
| SFC 231 | Receive   | Receive via page frame (page frame comm.)                                       |      | 1            | ✓            |
| SFC 232 | Fetch     | Fetch via page frame (page frame comm.)                                         |      | 1            | ✓            |
| SFC 233 | Control   | Control for page frame communication                                            |      | $\checkmark$ | ✓            |
| SFC 234 | Reset     | Reset for page frame communication                                              |      | 1            | ✓            |
| SFC 235 | Synchron  | Synchron for page frame communication                                           |      | ✓            | ✓            |
| SFC 236 | Send_All  | Send_All via page frame (page frame comm.)                                      |      | ✓            | ✓            |
| SFC 237 | Recv_All  | Receive_All via page frame (page frame com.)                                    |      | $\checkmark$ | $\checkmark$ |
| SFC 238 | Control1  | Control for page frame communication with Type ANZW: pointer and parameter IND. |      | 1            | 1            |

For a better overview, in the following every SFC repeats an extract of this assignment table.

The next pages describe the ADAM specific SFCs.

# Include ADAM library

| Outline                                           | <ul> <li>The ADAM specific SFCs are included in consignment in form of libraries.</li> <li>The libraries are self-extracting exe-files.</li> <li>When you want to use the ADAM specific SFCs, you have to import them into your project.</li> <li>Please follow this steps: <ul> <li>Execute F200000z_Vxxx.exe to extract the library</li> <li>"De-archivate" the library</li> <li>Open the library and transfer SFCs into the project</li> </ul> </li> </ul> |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extract<br>F200000z_Vxxx.exe                      | The self-extraction of F200000z_Vxxx.exe is started via a double-click on the file. Choose a destination directory and select <extract>. The following structure is created in the destination directory:</extract>                                                                                                                                                                                                                                           |
| De-archivate<br>library                           | To de-archivate the SFC library you start the STEP <sup>®</sup> 7 manager from<br>Siemens. Via <b>File</b> > <i>De-archivate</i> , you open a dialog window to select an<br>archive. The SFC library is to find in the directory structure above under<br>ADAM_S7. The file name is ADAM.ZIP.<br>Choose ADAM.ZIP and click on <open>.<br/>Choose a destination directory where to store the blocks and start the<br/>extraction via <ok>.</ok></open>         |
| Open library and<br>transfer SFCs<br>into project | After the extraction, open the library.<br>Open your project and copy the required SFCs from the library into the<br>directory "Blocks" of your project.<br>Now your user application allows the access to the ADAM specific blocks.                                                                                                                                                                                                                          |

# SFC 220 MMC\_CR\_F

| 11 | 21 | 51 |
|----|----|----|
| Х  | х  | х  |
|    |    |    |

**Description** Deploying this block, you may create a new res. access an existing file when a MMC is plugged-in.

As long as you do not open another file, you may access this file via read/write commands.

**Restrictions** For deploying the SFCs 220, 221 and 222, you have to regard the following restrictions:

- A read res. write access to the MMC is only possible after creation res. opening of the file via SFC 220.
- The data on MMC must be unfragmentated, for only complete data blocks may be read res. written.

When transferring data to the MMC from an external reading device, they may be fragmentated, i.e. the data is divided into blocks. This may be avoided by formatting the MMC before the write access.

At a write access from the CPU to the MMC, the data is always stored unfragmentated.

- When opening an already existing file, you have to use the same file name and file size that you used at creation of this file.
- A MMC is structured into sectors. Every sector has a size of 512Byte. Sector overlapping writing or reading is not possible. Access to sector overlapping data is only possible by using a write res. read command for every sector. By giving the offset, you define the according sector.

The following picture shows the usage of the single SFCs and their variables:



# 1

### Note!

For read and write accesses to the MMC, you firstly have to open the file with SFC 220!

# Parameters Calling this SFC, you specify the name and the size of the file that has to be created res. to open. With this SFC approximately a specify the name and the size of the file that has to be created res.

When calling this SFC 220, you have to transfer the following parameters:

| Adresse | Deklaration | Name     | Тур       | Anfi | Kommentar        |
|---------|-------------|----------|-----------|------|------------------|
| 0.0     | in          | FILENAME | STRING[25 |      | name of the file |
| 256.0   | in          | FILESIZE | DWORD     |      | size of the file |
| 260.0   | out         | RET_VAL  | WORD      |      | return value     |

- File nameType the file name used to store the data on the MMC. The file name may<br/>not exceed a maximum length of 8+3 signs (FAT).
- File sizeThe file size defines the size of the user data in Byte.



### Note!

When accessing an already existing file, it is mandatory to give not only the file name but also the file size. The entry of a "Joker" length is not supported at this time.

# **RET\_VAL** Return Value Word that returns a diagnostic/error message. 0 means OK. See the table below for the concerning messages:

| Value    | Description                                                                                                                                      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagnos  | tic messages                                                                                                                                     |
| 0000h    | no errors                                                                                                                                        |
| 0001h    | File already exists, is not fragmentated and the length value is identical or higher. This message is always sent when opening an existing file. |
| 8001h    | No or wrong MMC is plugged-in.                                                                                                                   |
| Error me | essages                                                                                                                                          |
| 8002h    | No FAT on MMC found.                                                                                                                             |
| A001h    | File name missing.                                                                                                                               |
| A002h    | File name wrong.                                                                                                                                 |
| A003h    | File exists but file size too low.                                                                                                               |
| A004h    | File exists but is fragmentated and cannot be opened.                                                                                            |
| A005h    | Not enough space on MMC.                                                                                                                         |
| A006h    | No free entry in root directory. Depending on the used MMC there may be min. 16 up to max. 512 entries in the root directory.                    |
| B000h    | An internal error occurred.                                                                                                                      |

# SFC 221 MMC\_RD\_F

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

**Description** Via the SFC 221 you may read data from a MMC. For read and write accesses to the MMC, you firstly have to open the file with SFC 220 and it has to be unfragmentated. For more detailed information to this and to the restrictions see the description of the SFC 220.

### Parameters

| Adresse | Deklaration | Name    | Тур   | Anfa | Kommentar          |
|---------|-------------|---------|-------|------|--------------------|
| 0.0     | in          | PTR     | ANY   |      | variable to read   |
| 10.0    | in          | OFFSET  | DWORD |      | offset in the file |
| 14.0    | out         | BUSY    | BOOL  |      | busy flag          |
| 16.0    | out         | RET_VAL | WORD  |      | return value       |

| PTR     | This variable of the type pointer points to a data area in the CPU where the content of the MMC has to be written to.    |                                                                                                                       |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| OFFSET  | Here you<br>the data                                                                                                     | Here you define the start address inside the file on the MMC from where on the data has to be transferred to the CPU. |  |  |  |
| BUSY    | During d<br>data tran                                                                                                    | ata transfer this Bit remains set. The Bit is reset as soon as the sfer is complete.                                  |  |  |  |
| RET_VAL | Return Value<br>Word, where a diagnostic/error message is returned to. 0 means OK. The<br>following messages may be set: |                                                                                                                       |  |  |  |
|         | Value                                                                                                                    | Description                                                                                                           |  |  |  |
|         | 0000h                                                                                                                    | no errors                                                                                                             |  |  |  |
|         | 8001h                                                                                                                    | No or wrong MMC                                                                                                       |  |  |  |
|         | 8002h                                                                                                                    | No FAT found on MMC                                                                                                   |  |  |  |
|         | 9001h                                                                                                                    | Pointer value is wrong                                                                                                |  |  |  |
|         | 9002h                                                                                                                    | Bit reading has been tried (variable of Boolean type). Bit reading is not possible.                                   |  |  |  |
|         | 9003h                                                                                                                    | File length exceeded                                                                                                  |  |  |  |
|         | 9004h                                                                                                                    | Sector limit of 512 has been tried to overrun. Sector overrun reading is not possible.                                |  |  |  |
|         | B000h                                                                                                                    | An internal error occurred.                                                                                           |  |  |  |

# SFC 222 MMC\_WR\_F

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

DescriptionVia the SFC 222, you may write to the MMC. For read and write accesses<br/>to the MMC, you firstly have to open the file with SFC 220 and it has to be<br/>unfragmentated.For more detailed information to this and to the restrictions see the<br/>description of the SFC 220.

### Parameters

| Adresse | Deklaration | Name    | Тур   | Anfa | Kommentar              |
|---------|-------------|---------|-------|------|------------------------|
| 0.0     | in          | PTR     | ANY   |      | variable to write from |
| 10.0    | in          | OFFSET  | DWORD |      | offset in the file     |
| 14.0    | out         | BUSY    | BOOL  |      | busy flag              |
| 16.0    | out         | RET_VAL | WORD  |      | return value           |

| PTR     | This variable of the type pointer points to a data area from where on the data starts that will be written to the MMC.   |                                                                                        |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| OFFSET  | This definder data is w                                                                                                  | nes the beginning of the data inside the file on the MMC where the ritten to.          |  |  |  |  |
| BUSY    | During d<br>data tran                                                                                                    | ata transfer this Bit remains set. The Bit is reset as soon as the sfer is complete.   |  |  |  |  |
| RET_VAL | Return Value<br>Word, where a diagnostic/error message is returned to. 0 means OK. The<br>following messages may be set: |                                                                                        |  |  |  |  |
|         | Value                                                                                                                    | Value Description                                                                      |  |  |  |  |
|         | 0000h                                                                                                                    | no errors                                                                              |  |  |  |  |
|         | 8001h                                                                                                                    | No or wrong MMC                                                                        |  |  |  |  |
|         | 8002h                                                                                                                    | No FAT found on MMC                                                                    |  |  |  |  |
|         | 9001h                                                                                                                    | Pointer value is wrong                                                                 |  |  |  |  |
|         | 9002h                                                                                                                    | Bit reading has been tried (variable of Boolean type). Bit reading is not possible.    |  |  |  |  |
|         | 9003h                                                                                                                    | File length exceeded                                                                   |  |  |  |  |
|         | 9004h                                                                                                                    | Sector limit of 512 has been tried to overrun. Sector overrun reading is not possible. |  |  |  |  |
|         | B000h                                                                                                                    | An internal error occurred.                                                            |  |  |  |  |

# SFC 223 PWM

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

# **Description** This block serves the parameterization of the pulse duration modulation for the last two output channels of X5.

### **Parameters**

| Adresse | Deklaration | Name     | Тур  | Anfi | Kommentar                                                  |
|---------|-------------|----------|------|------|------------------------------------------------------------|
| 0.0     | in          | Channel  | INT  |      | PWM Channel 01                                             |
| 2.0     | in          | Enable   | BOOL |      | True = Start PWM, False = Stop PWM                         |
| 4.0     | in          | Timebase | INT  |      | Timebase for period/duty ( $0 = 0$ , lms / $1 = 1$ , 0ms ) |
| 6.0     | in          | Period   | DINT |      | Period of PWM ( 060000 )                                   |
| 10.0    | in          | Duty     | DINT |      | Outputvalue per mille ( 01000 )                            |
| 14.0    | in          | MinLen   | DINT |      | Minimum pulse ( 060000 )                                   |
| 18.0    | out         | RET_VAL  | WORD |      | Errorcode ( 0 = no Error )                                 |



You define a timebase, a period, the pulse duty ratio and min. pulse length. The CPU determines an pulse series with an according pulse/break relation and issues this via the according output channel.

The SFC returns a certain error code. You can see the concerning error messages in the table at the following page.

The PWM parameters have the following relationship:



Period length = timebase x period Pulse length = (period length / 1000) x pulse duty ratio Pulse break = period length - pulse length

The parameters have the following meaning:

| Channel  | Define the<br>Value rang                                                                                                                                                                                                                                                                                                                   | e the output channel that you want to address.<br>range: 0 1                                                                                                |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Enable   | Via this p<br>tivate it (fa<br>Value rang                                                                                                                                                                                                                                                                                                  | parameter you may activate the PWM function (true) res. deac-<br>(false).<br>ange: true, false                                                              |  |  |  |
| Timebase | Timebase<br>and minim<br>You may o<br>Value rang                                                                                                                                                                                                                                                                                           | defines the resolution and the value range of the pulse, period<br>num pulse length per channel.<br>choose the values 0 for 0.1ms and 1 for 1ms.<br>ge: 0 1 |  |  |  |
| Period   | Through n<br>get the pe<br>Value rang                                                                                                                                                                                                                                                                                                      | nultiplication of the value defined at period with the timebase you<br>riod length.<br>ge: 0 60000                                                          |  |  |  |
| Duty     | This parameter shows the pulse duty ratio in promille. Here you define the relationship between pulse length and pulse break, concerned on one period.<br>1 Promille = 1 Timebase<br>If the calculated pulse duration is no multiplication of the timebase, it is rounded down to the next smaller time base limit.<br>Value range: 0 1000 |                                                                                                                                                             |  |  |  |
| MinLen   | Via MinLen you define the minimal pulse length. Switches are only made, if the pulse exceeds the here fixed minimum length. Value range: 0 60000                                                                                                                                                                                           |                                                                                                                                                             |  |  |  |
| Ret_Val  | Via the pa<br>below for t                                                                                                                                                                                                                                                                                                                  | rameter Ret_Val you get an error number in return. See the table he concerning error messages:                                                              |  |  |  |
|          | Value                                                                                                                                                                                                                                                                                                                                      | Description                                                                                                                                                 |  |  |  |
|          | 0000h                                                                                                                                                                                                                                                                                                                                      | no error                                                                                                                                                    |  |  |  |
|          | 8005h                                                                                                                                                                                                                                                                                                                                      | Parameter "MinLen" outside the permissible range                                                                                                            |  |  |  |
|          | 8006h                                                                                                                                                                                                                                                                                                                                      | Parameter "Duty" outside the permissible range                                                                                                              |  |  |  |
|          | 8007h                                                                                                                                                                                                                                                                                                                                      | Parameter "Period" outside the permissible range                                                                                                            |  |  |  |
|          | 8008h                                                                                                                                                                                                                                                                                                                                      | Parameter "Timebase" outside the permissible range                                                                                                          |  |  |  |
|          | 8009h                                                                                                                                                                                                                                                                                                                                      | Parameter "Channel" outside the permissible range                                                                                                           |  |  |  |
|          | 9001h                                                                                                                                                                                                                                                                                                                                      | Internal error:                                                                                                                                             |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                            | I here was no valid address for a parameter                                                                                                                 |  |  |  |
|          | 9002h                                                                                                                                                                                                                                                                                                                                      | Internal hardware error:                                                                                                                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                            | Please call the Advantech-Service.                                                                                                                          |  |  |  |

# SFC 224 HSC

| 11 | 21 | 51 |  |  |
|----|----|----|--|--|
| х  | х  | х  |  |  |
|    |    |    |  |  |

**Description** This SFC serves for parameterization of the counter functions (high speed counter) for the first 4 inputs.

### Parameters

| Adresse | Deklaration | Name        | Тур  | Anfangsvært                          | Kommentar                                                               |
|---------|-------------|-------------|------|--------------------------------------|-------------------------------------------------------------------------|
| 0.0     | in          | Channel     | INT  |                                      | HSC Channel 03                                                          |
| 2.0     | in          | Enable      | BOOL | L True = Start HSC, False = Stop HSC |                                                                         |
| 4.0     | in          | Direction   | INT  |                                      | 0=no counting, 1=up, 2=down                                             |
| 6.0     | in          | PresetValue | DINT |                                      | Preset Value for HSC ( 00xFFFFFFFF )                                    |
| 10.0    | in          | Limit       | DINT |                                      | Endvalue for Counting up / StartValue for Counting down ( 00xFFFFFFFF ) |
| 14.0    | out         | RET_VAL     | WORD |                                      | Errorcode ( 0 = no Error )                                              |
| 16.0    | in_out      | SetCounter  | BOOL |                                      | True = Copy PresetValue to HSC ( Bit will be reset from SFC )           |

| Channel     | Type the input chan Value range: 0 3                                                                                                                                                             | nel that you want to activate as counter.     |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|
| Enable      | Via this parameter you may activate the counter (true) res. deactivate it (false).                                                                                                               |                                               |  |  |  |
|             | Value range: true, fa                                                                                                                                                                            | alse                                          |  |  |  |
| Direction   | Fix the counting dire                                                                                                                                                                            | ection.                                       |  |  |  |
|             | Hereby is:                                                                                                                                                                                       | 0: Counter is deactivated, means Enable=false |  |  |  |
|             |                                                                                                                                                                                                  | 1: count up                                   |  |  |  |
|             |                                                                                                                                                                                                  | 2. count down                                 |  |  |  |
| PresetValue | Here you may preset a counter content, that is transferred to the according counter via SetCounter=true.                                                                                         |                                               |  |  |  |
|             | Value range: 0 Fl                                                                                                                                                                                | FFFFFFh                                       |  |  |  |
| Limit       | Via Limit you fix an upper res. lower limit for the counting direction (up down). When the limit has been reached, the according counter is set a and started new. If necessary an alarm occurs. |                                               |  |  |  |
|             | Value range: 0 FFFFFFFh                                                                                                                                                                          |                                               |  |  |  |

Ret\_ValVia the parameter Ret\_Val you get an error number in return. See the table<br/>below for the concerning error messages:

| Value | Description                                         |
|-------|-----------------------------------------------------|
| 0000h | No error                                            |
| 8002h | The chosen channel is not configured as counter     |
|       | (Error in the hardware configuration)               |
| 8008h | Parameter "Direction" outside the permissible range |
| 8009h | Parameter "Channel" outside the permissible range   |
| 9001h | Internal error:                                     |
|       | There was no valid address for a parameter          |
| 9002h | Internal hardware error:                            |
|       | Please call the Advantech-Service.                  |

# SetCounter Per SetCounter=true the value given by PresetValue is transferred into the according counter. The Bit is set back from the SFC. Value range: true, false

# SFC 225 HF PWM

| 11 | 21 | 51 |  |  |
|----|----|----|--|--|
| х  | х  | х  |  |  |
|    |    |    |  |  |

Description This block serves the parameterization of the pulse duration modulation for the last two output channels. This block is function identical to SFC 223. Instead of timebase and period, the SFC 225 works with a predefined frequency (up to 50kHz).

### **Parameters**

| Adresse | Deklaration | Name      | Тур  | Anfa | Kommentar                                |
|---------|-------------|-----------|------|------|------------------------------------------|
| 0.0     | in          | Channel   | INT  |      | PWM Channel 01                           |
| 2.0     | in          | Enable    | BOOL |      | True = Start PWM, False = Stop PWM       |
| 4.0     | in          | Frequence | WORD |      | Frequence of HF PWM in Hz ( 1250 50000 ) |
| 6.0     | in          | Duty      | DINT |      | Outputvalue per mille ( 01000 )          |
| 10.0    | in          | MinLen    | DINT |      | Minimum pulse ( 060000 )                 |
| 14.0    | out         | RET_VAL   | WORD |      | Errorcode ( 0 = no Error )               |



You define a frequency, the pulse duty ratio and min. pulse length. The CPU determines an pulse series with an according pulse/break relation and issues this via the according output channel.

The SFC returns a certain error code. You can see the concerning error messages in the table at the following page.

The PWM parameters have the following relationship: Output DÒ Period length Time Pulse Pulse length break Pulse duty ratio | | 500 | 700 1000

Period length = 1 / frequencyPulse length = (period length / 1000) x pulse duty ratio Pulse break = period length - pulse length

| Channel   | Define th<br>Value rai                                                                                                                              | Define the output channel that you want to address.<br>Value range: 0 1                                                                          |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Enable    | Via this<br>tivate it (                                                                                                                             | Via this parameter you may activate the PWM function (true) res. deac-<br>ivate it (false).                                                      |  |  |  |  |
|           | Value rai                                                                                                                                           | nge: true, faise                                                                                                                                 |  |  |  |  |
| Frequency | Type the                                                                                                                                            | frequency in Hz.                                                                                                                                 |  |  |  |  |
| · -       | Value ra                                                                                                                                            | nge: 1250 50000                                                                                                                                  |  |  |  |  |
| Duty      | <b>Duty</b> This parameter shows the pulse duty ratio in Promille. Here you or relationship between pulse length and pulse break, concerned period. |                                                                                                                                                  |  |  |  |  |
|           | 1 Promili                                                                                                                                           | e = 1 Timebase                                                                                                                                   |  |  |  |  |
|           | rounded                                                                                                                                             | down to the next smaller time base limit.                                                                                                        |  |  |  |  |
|           | Value ra                                                                                                                                            | nge: 0 1000                                                                                                                                      |  |  |  |  |
| MinLen    | Via MinL<br>the pulse<br>Value rai                                                                                                                  | Via MinLen you define the minimal pulse length. Switches are only made, if the pulse exceeds the here fixed minimum length. Value range: 0 60000 |  |  |  |  |
| Ret_Val   | Via the p<br>below for                                                                                                                              | parameter Ret_Val you get an error number in return. See the table the concerning error messages:                                                |  |  |  |  |
|           | Value                                                                                                                                               | Description                                                                                                                                      |  |  |  |  |
|           | 0000h                                                                                                                                               | no error                                                                                                                                         |  |  |  |  |
|           | 8005h                                                                                                                                               | Parameter "MinLen" outside the permissible range                                                                                                 |  |  |  |  |
|           | 8006h                                                                                                                                               | Parameter "Duty" outside the permissible range                                                                                                   |  |  |  |  |
|           | 8007h                                                                                                                                               | Parameter "Period" outside the permissible range                                                                                                 |  |  |  |  |
|           | 8008h                                                                                                                                               | Parameter "Timebase" outside the permissible range                                                                                               |  |  |  |  |
|           | 8009h                                                                                                                                               | Parameter "Channel" outside the permissible range                                                                                                |  |  |  |  |
|           | 9001h                                                                                                                                               | Internal error:                                                                                                                                  |  |  |  |  |
|           |                                                                                                                                                     | There was no valid address for a parameter                                                                                                       |  |  |  |  |
|           | 9002h                                                                                                                                               | Internal hardware error:                                                                                                                         |  |  |  |  |

Please call the Advantech-Service.

# SFC 227 - TD\_PRM

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

DescriptionThe SFC 227 supports the connection of the TD200 terminal from Siemens<br/>to the ADAM CPUs.Please regard that you have to include a data block with the TD200<br/>configuration data before calling the SFC 227. This data block may be<br/>created with the TDWizard from ADAM. This data block contains the<br/>general settings like language and display mode and the messages that are<br/>comfortably createable with the TDWizard from ADAM. TDWizard is a part<br/>of WinPLC7 and is available from Advantech.

**Parameters** The call of the SFC 227 specifies the terminal to communicate with. To call the SFC you have to transfer the following parameters:

| Adresse | Deklaration | Name          | Тур  | Anfi | Kommentar                                                 |
|---------|-------------|---------------|------|------|-----------------------------------------------------------|
| 0.0     | in          | MPI_ADDR      | BYTE |      | MPI address of TD                                         |
| 2.0     | in          | TD_STRUCT_PTR | ANY  |      | Pointer to begining of TD's data ( must be in datablock ) |
| 12.0    | in          | FUNC_KEY_PTR  | ANY  |      | Pointer to area for keys                                  |
| 22.0    | in          | OFFSET_INPUT  | BYTE |      | Forced values offset in input area                        |
| 23.0    | in          | OFFSET_OUTPUT | BYTE |      | Forced values offset in output area                       |
| 24.0    | out         | RET_VAL       | BYTE |      | Errorcode ( 0 = no Error )                                |

MPI\_ADRMPI addressEnter the MPI address of the connected TD200 terminal.Parameter type: Byte

TD\_STRUCT\_PTRTerminal Structure Pointer<br/>Points to the start of the data block containing the parameterization and the<br/>text blocks of the terminal.<br/>You may create the data block with TDWizard. This tool is a part of<br/>WinPLC7, the programming, test, diagnostic and simulation software from<br/>Advantech.<br/>Parameter type: Pointer<br/>Convenient range: DB

FUNC\_KEY\_PTRFunction Key Pointer<br/>Points to the area where the status byte for hitten keys is stored.<br/>Parameter type: Pointer<br/>Convenient range: DB, M

### OFFSET\_INPUT OFFSET\_OUTPUT

Offset Input, Offset Output

The terminal allows you to set in- and output byte. The TD200 from Siemens supports only a size of 16Byte for in- and outputs.

The ADAM CPUs from Advantech enables the access to the complete process image (each 128Byte for in- and outputs).

By setting an offset, you may overlay the periphery range of 128Byte with a window of 16Byte for in- and output. The following picture illustrates this:



# RET\_VAL Return Value Type the bit memory byte (marker byte) where the resulting message should be stored.

For specification of the (error) messages see the table below.

Messages

| Value | Description                                  |
|-------|----------------------------------------------|
| 00h   | no error                                     |
| 10h   | Error at MPI_ADR                             |
| 11h   | MPI_ADR contains MPI address of the CPU      |
| 12h   | Value in MPI_ADR exceeds max. MPI address    |
| 20h   | Error in OFFSET_INPUT                        |
| 21h   | Value in OFFSET_INPUT is too high            |
| 30h   | Error in OFFSET_OUTPUT                       |
| 31h   | Value in OFFSET_OUTPUT is too high           |
| 40h   | Error in TD_STRUCT_PTR                       |
| 41h   | TD_STRUCT_PTR points not to a DB             |
| 50h   | Error in FUNC_KEY_PTR                        |
| 51h   | Error in FUNC_KEY_PTR                        |
| 52h   | FUNC_KEY_PTR points not to an I, Q or M area |
| 60h   | An internal error occurred                   |

# SFC 228 - RW\_KACHEL

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

**Description** This SFC allows you the direct access to the page frame area of the CPU with a size of 4KByte. The page frame area is divided into four page frames, each with a size of 1KByte.

By fixing the page frame (i.e. "Kachel") no., offset and data width, the SFC 228 enables read and write access to an eligible page frame area.



### Note!

This SFC has been developed for test purposes and for building-up proprietary communication systems and is completely at the user's disposal. Please regard that a write access to the page frame area influences a communication directly!

### Parameter

| Adresse | Deklarat | Name    | Тур  | Ant | Kommentar                                                             |  |
|---------|----------|---------|------|-----|-----------------------------------------------------------------------|--|
| 0.0     | in       | K_Nr    | INT  |     | Interface number                                                      |  |
| 2.0     | in       | Offset  | INT  |     | Offset in Byte                                                        |  |
| 4.0     | in       | R_W     | INT  |     | 0=Read, 1=Write                                                       |  |
| 6.0     | in       | Size    | INT  |     | 1, 2 or 4 Bytes                                                       |  |
| 8.0     | out      | RET_VAL | BYTE |     | Errorcode, 0=0K                                                       |  |
| 10.0    | in_out   | Value   | ANY  |     | Value, which is read from interface or should be written to interface |  |

| K_NR    | Page frame (i.e. "Kachel") no.<br>Type the page frame no. that you want to access.<br>Value range: 0 3                              |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| OFFSET  | Page frame offset<br>Fix here an offset within the specified page frame.<br>Value range: 0 1023                                     |
| R_W     | Read/Write<br>This parameter specifies a read res. write access.<br>0 = read access, 1 = write access                               |
| SIZE    | Size<br>The size defines the width of the data area fixed via K_NR and OFFSET.<br>You may choose between the values 1, 2 and 4Byte. |
| RET_VAL | Return Value<br>Byte where an error message is returned to.                                                                         |

IN\_OUTIn-/output areaThis parameter fixes the in- res. output area for the data transfer.At a read access, this area up to 4Byte width contains the data read from<br/>the page frame area.At a write access, the data up to 4Byte width is transferred to the page<br/>frame area.At a write access, the data up to 4Byte width is transferred to the page<br/>frame area.Parameter type: Pointer

**Example** The following example shows the read access to 4Byte starting with Byte 712 in page frame 2. The read 4Byte are stored in DB10 starting with Byte 2. Herefor the following call is required:





### **Error messages**

| Value   | Description                                            |
|---------|--------------------------------------------------------|
| 00h     | no error                                               |
| 01h 05h | Internal error: No valid address found for a parameter |
| 06h     | defined page frame does not exist                      |
| 07h     | parameter SIZE $\neq$ 1, 2 or 4 at read access         |
| 08h     | parameter SIZE ≠ 1, 2 or 4 at write access             |
| 09h     | parameter R_W ≠ 0 or 1                                 |

# Page frame communication - Parameter

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

| General                  | <ul> <li>The delivered handling blocks allow the deployment of communication processors in the ADAM CPUs from Advantech.</li> <li>This increases the efficiency markable.</li> <li>The handling blocks control the complete data transfer between CPU and the CPs.</li> <li>Advantages of the handling blocks:</li> <li>you loose only few user application memory space</li> <li>short runtimes of the blocks</li> </ul> |                                                                                   |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
|                          | <ul> <li>The handling blocks don't need:</li> <li>bit memory area</li> <li>time areas</li> <li>counter areas</li> </ul>                                                                                                                                                                                                                                                                                                   |                                                                                   |  |  |  |
| Parameter<br>description | All handling blocks describe<br>the user application with this                                                                                                                                                                                                                                                                                                                                                            | d in the following use an identical interface to parameters:                      |  |  |  |
|                          | SSNR:                                                                                                                                                                                                                                                                                                                                                                                                                     | Interface number                                                                  |  |  |  |
|                          | ANR:                                                                                                                                                                                                                                                                                                                                                                                                                      | Order number                                                                      |  |  |  |
|                          | ANZW:                                                                                                                                                                                                                                                                                                                                                                                                                     | Indicator word (double word)                                                      |  |  |  |
|                          | IND:                                                                                                                                                                                                                                                                                                                                                                                                                      | Indirect fixing of the relative start address of the data source res. destination |  |  |  |
|                          | QANF/ZANF:                                                                                                                                                                                                                                                                                                                                                                                                                | Relative start address within the type                                            |  |  |  |
|                          | PAFE:                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameterization error                                                            |  |  |  |
|                          | BLGR:                                                                                                                                                                                                                                                                                                                                                                                                                     | Block size                                                                        |  |  |  |

A description of these parameters follows on the next pages.

| SSNR | Interface number                                                                                                                                                    |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|      | Number of the logical interface (page frame address) to which the according order refers to.                                                                        |  |  |
|      | Parameter type : Integer                                                                                                                                            |  |  |
|      | Convenient range : 0 255                                                                                                                                            |  |  |
| ANR  | Job number                                                                                                                                                          |  |  |
|      | The called job number for the logical interface.                                                                                                                    |  |  |
|      | Parameter type : Integer                                                                                                                                            |  |  |
|      | Convenient range : 1 223                                                                                                                                            |  |  |
| ANZW | Indicator word (double word)                                                                                                                                        |  |  |
|      | Address of the indicator double word in the user memory where the processing of the order specified under ANR is shown.                                             |  |  |
|      | Parameter type : Double word                                                                                                                                        |  |  |
|      | Convenient range : DW or MW; use either DW and DW+1<br>or MW and MW+2                                                                                               |  |  |
|      | The value DW refers to the data block opened before the incoming call or to the directly specified DB.                                                              |  |  |
|      |                                                                                                                                                                     |  |  |
| IND  | Kind of parameterization (direct, indirect)                                                                                                                         |  |  |
|      | This parameter defines the kind of data on which the pointer QUANF points.                                                                                          |  |  |
|      | 0: QANF points directly to the initial data of the source res. destination data.                                                                                    |  |  |
|      | <ol> <li>the pointer QANF/ZANF points to a memory cell, from where on<br/>the source res. destination data are defined (indirect).</li> </ol>                       |  |  |
|      | 2: the pointer QANF/ZANF points to a memory area where the source res. destination information lies (indirect).                                                     |  |  |
|      | 5: the pointer QANF/ZANF points to a memory cell, from where on<br>the source res. destination data and parameters of the indicator<br>word are defined (indirect). |  |  |
|      | 6: the pointer QANF/ZANF points to a memory area where the source res. destination data and parameters of the indicator word are laying (indirect).                 |  |  |
|      | Parameter type : Integer                                                                                                                                            |  |  |
|      | Convenient entries : 0, 1, 2, 5, 6                                                                                                                                  |  |  |
|      | Note!                                                                                                                                                               |  |  |
| Ĭ    | Please regard, that at IND=5 res. IND=6, the parameter ANZW is ignored!                                                                                             |  |  |

**QANF/ZANF** Relative start address of the data source res. destination and at IND=5 res. IND=6 of the indicator word.

This parameter of the type "pointer" (Any-Pointer) allows you fix the relative starting address and the type of the data source (at SEND) res. the data destination (at RECEIVE).

At IND=5 res. IND=6 the parameters of the indicator word are also in the data source.

Parameter type : Pointer

Convenient range : DB, M, A, E

Example: P#DB10.DBX0.0 BYTE 16 P#M0.0 BYTE 10 P#E 0.0 BYTE 8 P#A 0.0 BYTE 10

BLGR

Block size

During the boot process the stations agree about the block size (size of the data blocks) by means of SYNCHRON.

A high block size = high data throughput but longer run-times and higher cycle load.

A small block size = lower data throughput but shorter run-times of the blocks.

These block sizes are available:

| Value     | Block size       | Value | Block size |
|-----------|------------------|-------|------------|
| 0         | Default (64Byte) | 4     | 128Byte    |
| 1         | 16Byte           | 5     | 256Byte    |
| 2         | 32Byte           | 6     | 512Byte    |
| 3         | 64Byte           | 255   | 512Byte    |
| Parameter | r type : Integer |       |            |
| <u> </u>  |                  |       |            |

Convenient range : 0 ... 255

PAFE

Error indication at parameterization defects

This "BYTE" (output, marker) is set if the block detects a parameterization error, e.g. interface (plug-in) not detected or a non valid parameterization of QUANF/ZANF.

| Parameter type   | : Byte                   |
|------------------|--------------------------|
| Convenient range | : AB 0 AB127, MB 0MB 255 |

# Page frame communication - Parameter transfer

|                                 | 11 21 51<br>x x x                                                                                                                                                               |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Direct/indirect                 | A handling block may be parameterized directly or indirectly. Only the "PAFE" parameter must always been set directly.                                                          |
|                                 | When using the direct parameterization, the handling block works off the parameters given immediately with the block call.                                                      |
|                                 | When using the indirect parameterization, the handling block gets only pointers per block parameters. These are pointing to other parameter fields (data blocks or data words). |
|                                 | The parameters SSNR, ANR, IND and BLGR are of the type "integer", so you may parameterize them indirectly.                                                                      |
| Example for direct              | Direct parameter transfer                                                                                                                                                       |
| and indirect parameter transfer | CALL SFC 230<br>SSNR:=0<br>ANR :=3<br>IND :=0                                                                                                                                   |

ANZW:=MD44

PAFE:=MB79

Indirect parameter transfer

Please note that you have to load the bit memory words with the corresponding values before.

CALL SFC 230 SSNR:=MW10 ANR :=MW12 IND :=MW14 QANF:=P#DB10.DBX0.0 BYTE 16 PAFE:=MB80 ANZW:=MD48

QANF:=P#A 0.0 BYTE 16

The direct res. indirect transfer of the source and destination parameters are described in the following section.

## Page frame communication - Source res. destination definition

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

You have the possibility to set the entries for source, destination and ANZW Outline directly or store it indirectly in a block to which the QANF/ZANF res. ANZW pointer points.

> The parameter IND is the switch criterion between direct and indirect parameterization.

With IND=0 you fix that the pointer QANF/ZANF shows directly to the Direct parameterization of source source res. destination data. and destination The following table shows the possible QANF/ZANF parameters at the details (IND=0)

direct parameterization:

| QTYP/ZTYP<br>Description                    | Data in DB                                                                                                                        | Data in MB                                                       | Data in AB<br>Process image of<br>the outputs                    | Data in EB<br>Process image of<br>the inputs                     |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Pointer:<br>Example:                        | P#DB <b>a</b> .DBX <b>b</b> .0 BYTE <b>C</b><br>P#DB10.DBX 0.0 BYTE 8                                                             | P#M <b>b.</b> 0 BYTE <b>C</b><br>P#M 5.0 BYTE 10                 | P#A <b>b.</b> 0 BYTE <b>c</b><br>P#A 0.0 BYTE 2                  | P#E <b>b.</b> 0 BYTE <b>c</b><br>P#E 20.0 BYTE 1                 |
| DB, MB, AB, EB<br>Definition                | P#DBa<br>"a" means the DB-No.,<br>from where the source<br>data is fetched or where to<br>the destination data is<br>transferred. | P#M<br>The data is stored<br>in a MB.                            | P#A<br>The data is stored<br>in the output byte.                 | P#E<br>The data is stored<br>in the input byte.                  |
| Valid range<br>for "a"                      | 032767                                                                                                                            | irrelevant                                                       | irrelevant                                                       | irrelevant                                                       |
| Data / Marker<br>Byte, AB, EB<br>Definition | DB-No., where data fetch or write starts.                                                                                         | Bit memory byte<br>no., where data<br>fetch or write<br>starts.  | Output byte no.,<br>where data fetch<br>or write starts.         | Input byte no.,<br>where data fetch<br>or write starts.          |
| Valid range<br>for "b"                      | 0.02047.0                                                                                                                         | 0255                                                             | 0127                                                             | 0127                                                             |
| BYTE C<br>Definition                        | Length of the Source/<br>Destination data blocks in<br>Words.                                                                     | Length of the<br>Source/<br>Destination data<br>blocks in Bytes. | Length of the<br>Source/<br>Destination data<br>blocks in Bytes. | Length of the<br>Source/<br>Destination data<br>blocks in Bytes. |
| Valid range<br>for "c"                      | 12048                                                                                                                             | 1255                                                             | 1128                                                             | 1128                                                             |

| Indirect<br>parameterization of<br>source and | Indirect addressing means that QANF/ZANF points to a memory area where the addresses of the source res. destination areas and the indicator word are stored.                                            |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| destination details<br>(IND=1 or IND=2)       | In this context you may either define one area for data source, destination and indicator word (IND=5) or each, data source, data destination and the indicator word, get an area of their own (IND=6). |

The following table shows the possible QANF/ZANF parameters for indirect parameterization:

| QTYP/ZTYP               | IND=5                                                                                                                                                                                                                                                                                                                                                                                                       | IND=6                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition              | IND-5<br>Indirect addressing for source or<br>destination parameters and indicator<br>word.<br>The source or destination parameters<br>and ANZW are stored in a DB.<br>QANF/ZANF<br>DW +0 Data type source<br>+1 DB-Nr. at type<br>"DB", otherwise<br>irrelevant<br>+2 Start address<br>+3 Length in Byte<br>+4 Data type destin.<br>+5 DB-Nr. at type<br>"DB", otherwise<br>irrelevant<br>+6 Start address | IND-0<br>Indirect addressing for source and<br>destination parameters and ANZW.<br>The source and destination parameters<br>and ANZW are stored in a DB in a<br>sequential order.<br>QANF/ZANF<br>DW +0 Data type source<br>+1 DB-Nr. at type<br>"DB", otherwise<br>irrelevant<br>+2 Start address<br>+3 Length in Byte<br>+4 Data type destin.<br>+5 DB-Nr. at type<br>"DB", otherwise<br>irrelevant<br>+6 Start address |
| valid DR No             | 0 32767                                                                                                                                                                                                                                                                                                                                                                                                     | +7 Length in Byte<br>+8 Data type source<br>+9 DB-Nr. at type<br>"DB", otherwise<br>irrelevant<br>+10 Start address                                                                                                                                                                                                                                                                                                       |
| Data word<br>Definition | DW-No., where the stored data starts                                                                                                                                                                                                                                                                                                                                                                        | DW-No., where the stored data starts                                                                                                                                                                                                                                                                                                                                                                                      |
| Valid<br>range          | 0.02047.0                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02047.0                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Length<br>Definition    | Length of the DBs in Byte                                                                                                                                                                                                                                                                                                                                                                                   | Length of the DBs in Byte                                                                                                                                                                                                                                                                                                                                                                                                 |
| Valid<br>range          | 14 fix                                                                                                                                                                                                                                                                                                                                                                                                      | 22 fix                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Page frame communication - Indicator word ANZW

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

Status and error reports

Status and error reports are created by the handling blocks:

- by the indicator word ANZW (information at order commissioning),
- by the parameter error byte PAFE (indication of a wrong order parameterization).

Content and structure of the indicator word ANZW The "Indicator word" shows the status of a certain order on a CP. In your PLC program you should keep one indicator word for each defined order at hand.

The indicator word has the following structure:

| Byte | Bit 7 Bit 0                               |  |
|------|-------------------------------------------|--|
| 0    | State management CPU                      |  |
|      | Bit 0: Handshake convenient (data exists) |  |
|      | =0: RECEIVE blocked                       |  |
|      | =1: RECEIVE released                      |  |
|      | Bit 1: order commissioning is running     |  |
|      | =0: SEND/FETCH released                   |  |
|      | =1: SEND/FETCH blocked                    |  |
|      | Bit 2: Order ready without errors         |  |
|      | Bit 3: Order ready with errors            |  |
|      | Data management handling block            |  |
|      | Bit 4: Data receive/send is running       |  |
|      | Bit 5: Data transmission active           |  |
|      | Bit 6: Data fetch active                  |  |
|      | Bit 7: Disable/Enable data block          |  |
|      | =0: released                              |  |
|      | =1: blocked                               |  |
| 1    | Bit 0 Bit 3: Error management CPU         |  |
|      | =0: no error                              |  |
|      | =15: CPU-Error                            |  |
|      | =615: CP-Error                            |  |
|      | Bit 4 Bit 7: reserved                     |  |
| 2 3  | Length word handling block                |  |

In the "length word" the handling blocks (SEND, RECEIVE) store the data that has already been transferred, i.e. received data in case of a RECEIVE order, send data when there is a SEND order.

The announcement in the length word is always in byte and absolute.

| Status<br>management<br>Byte 0,<br>Bit 0 to Bit 3 | Here you may see if an order has already been started, if an error occurred<br>or if this order is blocked, e.g. a virtual connection doesn't exist any longer. |                                                                                                                                                                                                           |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit 0                                             | Handshake convenient                                                                                                                                            |                                                                                                                                                                                                           |  |  |
|                                                   | Set:                                                                                                                                                            | Per plug-in according to the "delete"-announcement in the order status bit: Handshake convenient (=1) is used at the RECEIVE block (telegram exists at PRIO 1 or RECEIVE impulse is possible at PRIO 2/3) |  |  |
|                                                   | Analyze:                                                                                                                                                        | Per RECEIVE block: The RECEIVE initializes the hand-<br>shake with the CP only if this bit is set.                                                                                                        |  |  |
|                                                   |                                                                                                                                                                 | Per application: for RECEIVE request (request a telegram at PRIO 1).                                                                                                                                      |  |  |
| Bit 1                                             | Order is running                                                                                                                                                |                                                                                                                                                                                                           |  |  |
|                                                   | Set:                                                                                                                                                            | Per plug-in: when the CP received the order.                                                                                                                                                              |  |  |
|                                                   | Delete:                                                                                                                                                         | Per plug-in: when an order has been commissioned (e.g. receipt received).                                                                                                                                 |  |  |
|                                                   | Analyze:                                                                                                                                                        | Per handling blocks: A new order is only send, when the order before is completely commissioned.                                                                                                          |  |  |
|                                                   |                                                                                                                                                                 | Per user: when you want to know, if triggering a new order is convenient.                                                                                                                                 |  |  |
| Bit 2                                             | Order ready without errors                                                                                                                                      |                                                                                                                                                                                                           |  |  |
|                                                   | Set:                                                                                                                                                            | Per plug-in: when the according order has been commissioned without errors.                                                                                                                               |  |  |
|                                                   | Delete:                                                                                                                                                         | Per plug-in: when the according order is triggered for a second time.                                                                                                                                     |  |  |
|                                                   | Analyze:                                                                                                                                                        | Per user: to proof that the order has been commissioned without errors.                                                                                                                                   |  |  |
| Bit 3                                             | Order ready with errors                                                                                                                                         |                                                                                                                                                                                                           |  |  |
|                                                   | Set:                                                                                                                                                            | Per plug-in: when the according order has been commissioned with errors. Error causes are to find encrypted in the high-part of the indicator word.                                                       |  |  |
|                                                   | Delete:                                                                                                                                                         | Per plug-in: when the according order is triggered for a second time.                                                                                                                                     |  |  |
|                                                   | Analyze:                                                                                                                                                        | Per user: to proof that the order has been commissioned with errors. If set, the error causes are to find in the high-byte of the indicator word.                                                         |  |  |

| Data management<br>Byte 0,<br>Bit 4 to Bit 7 | Here you may check if the data transfer is still running or if the data fetch res. transmission is already finished. By means of the bit "Enable/Disable" you may block the data transfer for this order (Disable=1; Enable=0). |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit 4                                        | Data fetch / Data transmission is active                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                              | Set:                                                                                                                                                                                                                            | Per handling block SEND or RECEIVE, if the fetch/transmission has been started, e.g. when data is transferred with the ALL-function (DMA-replacement), but the impulse came per SEND-DIRECT.                                                                                                                                                                                                                                             |  |
|                                              | Delete:                                                                                                                                                                                                                         | Per handling blocks SEND or RECEIVE, if the data transfer of an order is finished (last data block has been transferred).                                                                                                                                                                                                                                                                                                                |  |
|                                              | Analyze:                                                                                                                                                                                                                        | Per user: During the data transfer CP << >>AG the user<br>must not change the record set of an order. This is<br>uncritical with PRIO 0/1 orders, because here the data<br>transfer is realizable in one block cycle. Larger data<br>amounts however are transferred in blocks during more<br>AG cycles. To ensure data consistency you should proof<br>that the data block isn't in transfer any more before you<br>change the content! |  |
| BIT 5                                        | Data transmiss                                                                                                                                                                                                                  | ion is active                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                              | Set:                                                                                                                                                                                                                            | Per handling block SEND, when the data transition for an order is ready.                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                              | Delete:                                                                                                                                                                                                                         | Per handling block SEND, when the data transfer for a new order has been started (new trigger).                                                                                                                                                                                                                                                                                                                                          |  |
|                                              |                                                                                                                                                                                                                                 | Per user: When analysis is ready (flank creation).                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                              | Analyze:                                                                                                                                                                                                                        | Per user: Here you may ascertain, if the record set of an<br>order has already been transferred to the CP res. at which<br>time a new record set concerning a running order (e.g.<br>cyclic transition) may be started.                                                                                                                                                                                                                  |  |
| 74.0                                         |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Bit 6                                        | Data fetch active                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                              | Set                                                                                                                                                                                                                             | finished.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                              | Delete:                                                                                                                                                                                                                         | Per RECEIVE, when data transfer to AG for a new order (new trigger) has been started. Per user, when analyzing (edge creation).                                                                                                                                                                                                                                                                                                          |  |
|                                              | Analyze:                                                                                                                                                                                                                        | Per user: Here you may ascertain, if the record set of an order has already been transferred to the CP res. at what time a new record set for the current order has been transferred to the AG.                                                                                                                                                                                                                                          |  |

Bit 7 **Disable/Enable data block** Per user: to avoid overwriting an area by the RECEIVE Set: block res. data transition of an area by the SEND block (only for the first data block). Delete: Per user: to release the according data area. Per handling blocks SEND and RECEIVE: if Bit 7 is set, Analyze: there is no data transfer anymore, but the blocks announce an error to the CP. Those bits announce the error messages of the order. The error messages **Error management** are only valid if the bit "Order ready with error" in the status bit is set Byte 1, simultaneously. Bit 0 to Bit 3 The following error messages may occur: 0 no error If the bit "Order ready with error" is set, the CP had to reinitialize the connection, e.g. after a reboot or RESET. 1 wrong Q/ZTYP at HTB The order has been parameterized with the wrong type label. 2 AG area not found The order impulse had a wrong parameterized DB-No. 3 AG area too small Q/ZANF and Q/ZLAE overwrite the range boundaries. Handling with data blocks the range boundary is defined by the block size. With flags, timers, counters etc. the range size depends on the AG. 4 QVZ-Error in the AG This error message means, that you chose a source res. destination parameter of the AG area, where there is either no block plugged in or the memory has a defect. The QVZ error message can only occur with the type Q/ZTYP AS, PB, QB or memory defects. 5 Error at indicator word The parameterized indicator word can not be handled. This error occurs, if ANZW declared a data word res. double word, that is not (any more) in the specified data block, i.e. DB is too small or doesn't exist. 6 no valid ORG-Format The data destination res. source isn't declared, neither at the handling block (Q/TYP="NN") nor at the coupler block. 7 Reserved 8 no available transfer connections The capacity for transfer connections is at limit. Delete unnecessary connections. 9 Remote error There was an error at the communication partner during a READ/WRITE-order.

A Connection error

The connection is not (yet) established. The message disappears as soon as the connection is stable. If all connections are interrupted, please check the block itself and the bus cable. Another possibility for the occurrence of this error is a wrong parameterization, like e.g. inconsistent addressing.

### B Handshake error

This could be a system error or the size of the data blocks has been defined out of range.

### C Initial error

The wrong handling block tried to initialize the order or the size of the given data block was too large.

### D Cancel after RESET

This is a normal system message. With PRIO 1 and 2 the connection is interrupted but will be established again, as soon as the communication partner is online. PRIO 3 connections are deleted, but can be initialized again.

### E Order with basic load function

This is a normal system message. This order is a READ/WRITE-PASSIV and can not be started from the AG.

### F Order not found

The called order is not parameterized on the CP. This error may occur when the SSNR/A-No. combination in the handling block is wrong or no connection block is entered.

The bits 4 to 7 of Byte 2 are reserved for extensions.

#### Length word Byte 2 and Byte 3 In the length word the handling blocks (SEND, RECEIVE) store the already transferred data of the current order, i.e. the received data amount for receiving orders, the sent data amount for sending orders.

Describe: Per SEND, RECEIVE during the data transfer. The length word is calculated from: current transfer amount + amount of already transferred data

Delete: Per overwrite res. with every new SEND, RECEIVE, FETCH. If the bit "order ready without error" res. "Data fetch/data

transition ready " is set, the "Length word" contains the current source res. destination length.

If the bit "order ready with error" is set, the length word contains the data amount transferred before the failure occurred.

### Important status and error reports of the CPU

Status and error reports
The following section lists important status and error messages that can appear in the "Indicator word". The representation is in HEX patterns. The literal X means "not declared" res. "irrelevant"; No. is the error number.

PossibleIndicator word: X F X Aindicator wordsThe error index "F" shows, that the according order is not defined on the<br/>CP. The state index "A" causes a block of this order (for SEND/FETCH and

Indicator word: X A X A

RECEIVE).

The error index "A" shows that the connection of the communication order is not (yet) established. Together with the state index "A" SEND, RECEIVE and FETCH are blocked.

#### Indicator word: X 0 X 8

The connection has been established again (e.g. after a CP reboot), the SEND order is released (SEND-communication order).

#### Indicator word: X 0 X 9

The connection has been established again, the RECEIVE order is released (RECEIVE-communication order).

*Indicator word: X 0 2 4* SEND has been worked off without errors, the data was transferred.

*Indicator word: X 0 4 5* RECEIVE was successful, the data arrived at the AG.

Indicator word: X 0 X 2

The SEND-, RECEIVE-, READ- res. WRITE order is still running. At SEND the partner is not yet ready for RECEIVE or vice versa.

### Important indicator word states

The following table shows the most important indicator word states:

### Messages at SEND

| State under H1         | Prio 0/1 | Prio 2   | Prio 3/4 |
|------------------------|----------|----------|----------|
| State under TCP/IP     | Prio 1   | Prio 2   | Prio 3   |
| after reboot           | 0 A 0 A  | 0 A 0 A  | 0008     |
| after connection start | X 0 X 8  | X 0 X 8  |          |
| after initial impulse  | X 0 X 2  | X 0 X 2  | X 0 X 2  |
| ready without error    | X 0 2 4  | X 0 2 4  | X 0 2 4  |
| ready with error       | X No X 8 | X No X 8 | X No X 8 |
| after RESET            | XDXA     | XDXA     | XDX8     |

### Messages at RECEIVE

| State under H1         | Prio 0/1 | Prio 2   | Prio 3/4 |
|------------------------|----------|----------|----------|
| State under TCP/IP     | Prio 1   | Prio 2   | Prio 3   |
| after reboot           | 0 A 0 A  | 0 A 0 A  | 0001     |
| after connection start | X 0 X 4  | X009     |          |
| after initial impulse  | X 0 X 2  | X 0 X 2  | X 0 X 2  |
| Telegram received      | X 0 X 1  |          |          |
| ready without error    | X 0 4 1  | X 0 4 5  | X 0 4 5  |
| ready with error       | X No X 8 | X No X 9 | X No X 9 |
| after RESET            | XDXA     | XDXA     | XDX9     |

### Messages at READ/WRITE-ACTIVE

| State under H1         | Prio 0/1 | Prio 2   | Prio 3/4 |
|------------------------|----------|----------|----------|
| State under TCP/IP     | Prio 1   | Prio 2   | Prio 3   |
| after reboot           |          | 0 A 0 A  |          |
| after connection start |          | X 0 0 8  |          |
| after initial impulse  |          | X 0 X 2  |          |
| READ ready             |          | X 0 4 4  |          |
| WRITE ready            |          | X 0 2 4  |          |
| ready with error       |          | X No X 8 |          |
| after RESET            |          | XDXA     |          |
|                        |          |          |          |

# Page frame communication - Parameterization error PAFE



The parameterization error byte PAFE is set (output or bit memory), when the block detects a parameterization error., e.g. there is no interface or there is an invalid parameterization of QANF/ZANF. PAFE has the following structure:

| Byte | Bit 7 Bit 0                                                 |
|------|-------------------------------------------------------------|
| 0    | Bit 0: error                                                |
|      | =0: no error                                                |
|      | =1: error, error-No. in Bit 4 to Bit 7                      |
|      | Bit 1 Bit 3: reserved                                       |
|      | Bit 4 Bit 7: error-No.                                      |
|      | =0: no error                                                |
|      | =1: wrong ORG-Format                                        |
|      | =2: area not found (DB not found)                           |
|      | =3: area too small                                          |
|      | =4: QVZ- error                                              |
|      | =5: wrong indicator word                                    |
|      | =6: no Source-/Destinationparameters at<br>SEND/RECEIVE ALL |
|      | =7: interface not found                                     |
|      | =8: interface not specified                                 |
|      | =9: interface overflow                                      |
|      | =A: reserved                                                |
|      | =B: invalid order-No.                                       |
|      | =C: interface of CP doesn't quit or is negative             |
|      | =D: Parameter BLGR not allowed                              |
|      | =E: reserved                                                |
|      | =F: reserved                                                |

# **SFC 230 - SEND**

| 11 | 21 | 51 |
|----|----|----|
| Х  | х  | х  |
|    |    |    |

Description

The SEND block initializes a send order to a CP.

Normally SEND is called in the cyclic part of the user application program. Although the insertion of this block into the interrupt or the time-alarm program part is possible, the indicator word (ANZW), however, may not be updated cyclically. This should be taken over by a CONTROL block.

The connection initialization with the CP for data transmission and for activating a SEND impulse is only started, if:

- the FB VKE received "1"
- the CP released the order. (Bit "order active" in ANZW =0).

During block stand-by, only the indicator word is updated.

#### Parameter

| Adresse | Deklarat | Name | Тур   | Anfi | Kommentar                                                                |  |
|---------|----------|------|-------|------|--------------------------------------------------------------------------|--|
| 0.0     | in       | SSNR | INT   |      | Interface number, number of logical interface                            |  |
| 2.0     | in       | ANR  | INT   |      | The job that must be initiated at the interface, i.e. start transmission |  |
| 4.0     | in       | IND  | INT   |      | Mode of Adressing ( direct / indirect )                                  |  |
| 6.0     | in       | ZANF | ANY   |      | Pointer to data destination                                              |  |
| 16.0    | out      | PAFE | BYTE  |      | Error indicator for configuration errors                                 |  |
| 18.0    | in_out   | ANZU | DWORD |      | Indicatorword ( progress of started jobs is displayed )                  |  |

SEND\_ALL for data transmission

If the CP is able to take over the data directly, the SEND block transfers the requested data in one session. If the CP requests only the order parameters or the amount of the depending data is too large, the CP only gets the sending parameters res. the parameter with the first data block. The according data res. the assigned serials blocks for this order are requested from the CP by SEND\_ALL to the CPU. Herefor it is necessary that the block SEND\_ALL is called minimum one time per cycle.

The user interface is for all initialization types equal, only the transfer time of the data is postponed for minimum one CPU cycle.

# SFC 231 - RECEIVE

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

#### Description

The RECEIVE block receives data from a CP.

Normally the RECEIVE block is called in the cyclic part of the user application program. Although the insertion of this block into the interrupt or the waking program part is possible, the indicator word can not be updated cyclically. This should be taken over by a CONTROL block.

The handshake with the CP (order initialization) and for activating a RECEIVE block is only started, if

- the FB VKE received "1"
- the CP released the order (Bit "Handshake convenient" = 1).

#### Parameter

| Adresse | Deklarat | Name | Тур   | Anfi | Kommentar                                                                |  |
|---------|----------|------|-------|------|--------------------------------------------------------------------------|--|
| 0.0     | in       | SSNR | INT   |      | Interface number, number of logical interface                            |  |
| 2.0     | in       | ANR  | INT   |      | The job that must be initiated at the interface, i.e. start transmission |  |
| 4.0     | in       | IND  | INT   |      | Mode of Adressing ( direct / indirect )                                  |  |
| 6.0     | in       | ZANF | ANY   |      | Pointer to data destination                                              |  |
| 16.0    | out      | PAFE | BYTE  |      | Error indicator for configuration errors                                 |  |
| 18.0    | in_out   | ANZU | DWORD |      | Indicatorword ( progress of started jobs is displayed )                  |  |

If the block runs in stand-by only the indicator word is updated.

The RECEIVE block reacts different depending from the kind of supply and the CP reaction:

- If the CP transmits a set of parameters although the RECEIVE block itself got destination parameters, the parameter set of the block has the priority above those of the CP.
- Large amounts of data can only be transmitted in blocks. Therefore you have to transmit the assigned serial blocks by means of RECEIVE\_ALL to the CPU. It is necessary that the block RECEIVE\_ALL is called minimum one time per application cycle and CP interface, if you want to transmit larger data amounts. You also have to integrate the RECEIVE\_ALL cyclically, if the CP only uses the RECEIVE for releasing a receipt telegram and the data is transmitted via the background communication of the CPU.

# SFC 232 - FETCH

| 11 | 21 | 51 |
|----|----|----|
| Х  | х  | Х  |
|    |    |    |

Description

The FETCH block initializes a FETCH order in the partner station.

The FETCH order defines data source and destination and the data source is transmitted to the partner station.

The CPU ADAM 821x from Advantech realizes the definition of source and destination via a pointer parameter.

The partner station provides the *Source* data and transmits them via SEND\_ALL back to the requesting station. Via RECEIVE\_ALL the data is received and is stored in *Destination*.

The update of the indicator word takes place via FETCH res. CONTROL.

The handshake for initializing FETCH is only started, if

- the FB VKE receives "1"
- the function has been released in the according CP indicator word (order active = 0).

#### Parameter

| Adresse | Deklara | Name | Тур   | Anfi | Kommentar                                                                |  |
|---------|---------|------|-------|------|--------------------------------------------------------------------------|--|
| 0.0     | in      | SSNR | INT   |      | Interface number, number of logical interface                            |  |
| 2.0     | in      | ANR  | INT   |      | The job that must be initiated at the interface, i.e. start transmission |  |
| 4.0     | out     | PAFE | BYTE  |      | Error indicator for configuration errors                                 |  |
| 6.0     | in_out  | ANZU | DWORD |      | Indicatorword ( progress of started jobs is displayed )                  |  |



#### Note!

More information for indirect parameterization you will find in this chapter in "Page frame communication - Source res.".

# SFC 233 - CONTROL

| 11 | 21 | 51 |
|----|----|----|
| Х  | х  | х  |
|    |    |    |

Description

The purpose of the CONTROL block is the following:

- Update of the indicator word
- Query if a certain order of the CP is currently active, e.g. request for a receipt telegram
- Query the CP which order is recently in commission.

The CONTROL block is not responsible for the handshake with the CP, it just transfers the announcements in the order status to the parameterized indicator word. The block is independent from the VKE and should be called from the cyclic part of the application.

#### Parameter

| Adresse | Deklara | Name | Тур  | Anfa | Kommentar                                                                |  |
|---------|---------|------|------|------|--------------------------------------------------------------------------|--|
| 0.0     | in      | SSNR | INT  |      | Interface number, number of logical interface                            |  |
| 2.0     | in      | ANR  | INT  |      | The job that must be initiated at the interface, i.e. start transmission |  |
| 4.0     | out     | PAFE | BYTE |      | Error indicator for configuration errors                                 |  |

ANR

If ANR  $\neq$ 0, the indicator word is built up and handled equal to all other handling blocks.

If the parameter ANR gets 0, the CONTROL command transmits the content of the order state cell 0 to the LOW part of the indicator words

The order state cell 0 contains the number of the order that is in commission, e.g. the order number of a telegram (set by the CP).

# SFC 234 - RESET

| 11 | 21 | 51 |
|----|----|----|
| Х  | х  | х  |
|    |    |    |

DescriptionThe RESET\_ALL function is called via the order number 0. This resets all<br/>orders of this logical interface, e.g. deletes all order data and interrupts all<br/>active orders.With a direct function (ANR≠0) only the specified order will be reset on the<br/>logical interface.

The block depends on the VKE and may be called from cyclic, time or alarm controlled program parts.

#### Parameter

| Adresse | Deklara | Name | Тур  | Anfi | Kommentar                                     |
|---------|---------|------|------|------|-----------------------------------------------|
| 0.0     | in      | SSNR | INT  |      | Interface number, number of logical interface |
| 2.0     | in      | BLGR | INT  |      | Blocksize                                     |
| 4.0     | out     | PAFE | BYTE |      | Error indicator for configuration errors      |

Operating modes

The block has two different operating modes:

- RESET ALL
- RESET DIRECT

# SFC 235 - SYNCHRON

| 11 | 21 | 51 |
|----|----|----|
| Х  | х  | х  |
|    |    |    |

**Description** The SYNCHRON block initializes the synchronization between CPU and CP during the boot process. For this it has to be called from the starting OBs. Simultaneously the transition area of the interface is deleted and predefined and the CP and the CPU 821x agree about the block size.

#### Parameter

| Adresse | Deklaration | Name | Тур   | Anfi | Kommentar                                               |
|---------|-------------|------|-------|------|---------------------------------------------------------|
| 0.0     | in          | SSNR | INT   |      | Interface number, number of logical interface           |
| 2.0     | out         | PAFE | BYTE  |      | Error indicator for configuration errors                |
| 4.0     | in_out      | ANZU | DWORD |      | Indicatorword ( progress of started jobs is displayed ) |

#### Block size

To avoid long cycle run-times it is convenient to split large data amounts into smaller blocks for transmitting them between CP and CPU. You declare the size of this blocks by means of "block size".

A large block size = high data throughput, but also longer run-times and therefore a high cycle time strain.

A small block size = smaller data throughput, but also shorter run-times of the blocks.

Following block sizes are available:

| Value    | Block si | ze        | Value | Block size |
|----------|----------|-----------|-------|------------|
| 0        | Default  | (64Byte)  | 4     | 128Byte    |
| 1        | 16Byte   |           | 5     | 256Byte    |
| 2        | 32Byte   |           | 6     | 512Byte    |
| 3        | 64Byte   |           | 255   | 512Byte    |
| Paramete | er type  | : Integer |       |            |
|          |          |           |       |            |

Valid range : 0 ... 255

# SFC 236 - SEND\_ALL

| 11 | 21 | 51 |
|----|----|----|
| х  | х  | х  |
|    |    |    |

**Description** Via the SEND\_ALL block, the data is transmitted from the CPU to the CP by using the declared block size.

Location and size of the data area that is to transmit with SEND\_ALL, must be declared before by calling SEND res. FETCH.

In the indicator word that is assigned to the concerned order, the bit "ENABLE/DISABLE" is set, "Data transmission starts" and "Data transmission running" is calculated or altered.

#### Parameter

| Adresse | Deklaration | Name | Тур   | Anf | Kommentar                                               |
|---------|-------------|------|-------|-----|---------------------------------------------------------|
| 0.0     | in          | SSNR | INT   |     | Interface number, number of logical interface           |
| 2.0     | out         | PAFE | BYTE  |     | Error indicator for configuration errors                |
| 4.0     | in_out      | ANZU | DWORD |     | Indicatorword ( progress of started jobs is displayed ) |

#### ANZW

In the indicator word of the block, the indicator word, that is parameterized in the SEND\_ALL block, the current order number is stored (0 means stand-by).

The amount of the transmitted data for one order is shown in the data word of SEND\_ALL which follows the indicator word.



#### Note!

In the following cases, the SEND\_ALL command has to be called for minimum one time per cycle of the block OB1:

- if the CP is able to request data from the CPU independently
- if a CP order is initialized via SEND, but the CP still has to request the background communication data of the CPU for this order.
- if the amount of data, that should be transmitted by this SEND to the CP, is higher than the declared block size.

# SFC 237 - RECEIVE\_ALL

| 11 | 21 | 51 |
|----|----|----|
| Х  | х  | х  |
|    |    |    |

**Description** Via the RECEIVE\_ALL block, the data received from the CP is transmitted from the CP to the CPU by using the declared block size.

Location and size of the data area that is to transmit with RECEIVE\_ALL, must be declared before by calling RECEIVE.

In the indicator word that is assigned to the concerned order, the bit "ENABLE/DISABLE" is set, "Data transition starts" and "Data transition/fetch running" is analyzed or altered. The receiving amount is shown in the following word.

#### Parameter

| Adresse | Deklaration | Name | Тур  | Anfa | Kommentar                                                                |
|---------|-------------|------|------|------|--------------------------------------------------------------------------|
| 0.0     | in          | SSNR | INT  |      | Interface number, number of logical interface                            |
| 2.0     | in          | ANR  | INT  |      | The job that must be initiated at the interface, i.e. start transmission |
| 4.0     | in          | IND  | INT  |      | Reserved ( at the moment )                                               |
| 6.0     | out         | PAFE | BYTE |      | Error indicator for configuration errors                                 |
| 8.0     | in_out      | ANZW | ANY  |      | Indicatorword ( progress of started jobs is displayed )                  |

#### ANZW

In the indicator word of the block, the indicator word, , that is parameterized in the RECEIVE\_ALL block, the current order number is stored. In the stand-by running mode of RECEIVE\_ALL the block indicator word is deleted.



#### Note!

In the following cases, the RECEIVE\_ALL command has to be called for minimum one time per cycle of the block OB1:

- if the CP should send data to the CPU independently
- if a CP order is initialized via RECEIVE, but the CP still has to request the background communication data of the CPU for this order.
- if the amount of data, that should be transmitted to the CPU by this RECEIVE, is higher than the declared block size.

## SFC 238 - CTRL1

| 11 | 21 | 51 |
|----|----|----|
| Х  | х  | х  |
|    |    |    |

#### Description

This block is identical to the CONTROL block SFC 233 except that the indicator word is of the type Pointer and that it additionally includes the parameter IND, reserved for further extensions.

The purpose of the CONTROL block is the following:

- Update of the indicator word
- Query if a certain order of the CP is currently active, e.g. request for a receipt telegram
- Query the CP which order is recently in commission.

The CONTROL block is not responsible for the handshake with the CP, it just transfers the announcements in the order status to the parameterized indicator word. The block is independent from the VKE and should be called from the cyclic part of the application.

#### Parameter

| Adresse | Deklaration | Name | Тур  | Anfa | Kommentar                                                                |
|---------|-------------|------|------|------|--------------------------------------------------------------------------|
| 0.0     | in          | SSNR | INT  |      | Interface number, number of logical interface                            |
| 2.0     | in          | ANR  | INT  |      | The job that must be initiated at the interface, i.e. start transmission |
| 4.0     | in          | IND  | INT  |      | Reserved ( at the moment )                                               |
| 6.0     | out         | PAFE | BYTE |      | Error indicator for configuration errors                                 |
| 8.0     | in_out      | ANZU | ANY  |      | Indicatorword ( progress of started jobs is displayed )                  |

| ANR  | If ANR $\neq 0$ , the indicator word is built up and handled equal to all other handling blocks.                                        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|
|      | If the parameter ANR gets 0, the CONTROL command transmits the content of the order state cell 0 to the LOW part of the indicator words |
|      | The order state cell 0 contains the number of the order that is in commission, e.g. the order number of a telegram (set by the CP).     |
| IND  | The parameter IND has no functionality at this time and is reserved for further extensions.                                             |
| ANZW | The indicator word ANZW is of the type Pointer. This allows you to store the indicator word in a data block.                            |

# Chapter 8 Instruction list

| Outline | <ul> <li>The following chapter lists the available commands of the CPU 821x<br/>Advantech. The instruction list intends to give you an overview ove<br/>commands and their syntax. The commands are sorted by topic<br/>alphabetical order.</li> <li>Via the content the different topics are available.</li> <li>The alphabetical instruction list gives you direct access to the instruction<br/>For the parameters are integrated in the instruction list, there is no<br/>parameter list.</li> <li>The following chapter describes: <ul> <li>Instruction and abbreviation list</li> <li>Structure of the registers and addressing examples</li> <li>Instruction list</li> <li>ADAM specific diagnostic entries (Event-IDs)</li> </ul> </li> </ul> | from<br>r the<br>cs in<br>ns.<br>extra |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Content | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Page                                   |
|         | Chapter 8 Instruction list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8-1                                    |
|         | Alphabetical instruction list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8-2                                    |
|         | Abbreviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8-5                                    |
|         | Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8-7                                    |
|         | Addressing examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8-8                                    |
|         | Math instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8-11                                   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8-13                                   |
|         | Program display and null instruction instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8-14                                   |
|         | Edge-triggered instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-14                                   |
|         | LOad Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CI-0                                   |
|         | Still listiucions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-10                                   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-19                                   |
|         | Transfer instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8-22                                   |
|         | Data type conversion instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8-25                                   |
|         | Comparison instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8-26                                   |
|         | Bit logic instructions (Bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-27                                   |
|         | Word logic instructions with the contents of ACCU1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-33                                   |
|         | Timer instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-33                                   |
|         | Counter instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8-35                                   |
|         | ADAM specific diagnostic entries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8-36                                   |

# Alphabetical instruction list

| Instruction                  | Page |
|------------------------------|------|
| )                            | 8-29 |
| +                            | 8-12 |
| +AR1                         | 8-12 |
| +AR2                         | 8-12 |
| +D                           | 8-11 |
| +                            | 8-11 |
| +R                           | 8-11 |
| -D                           | 8-11 |
| -1                           | 8-11 |
| -R                           | 8-11 |
| *D                           | 8-11 |
| *                            | 8-11 |
| *R                           | 8-11 |
| /D                           | 8-11 |
| /I                           | 8-11 |
| /R                           | 8-11 |
| =                            | 8-19 |
| ==D                          | 8-26 |
| ==                           | 8-26 |
| ==R                          | 8-26 |
| <=D                          | 8-26 |
| <=                           | 8-26 |
| <=R                          | 8-26 |
| <d< td=""><td>8-26</td></d<> | 8-26 |
| <                            | 8-26 |
| <r< td=""><td>8-26</td></r<> | 8-26 |
|                              |      |

| Instruction | Page             |
|-------------|------------------|
| <>D         | 8-26             |
| <>          | 8-26             |
| <>R         | 8-26             |
| >=D         | 8-26             |
| >=          | 8-26             |
| >=R         | 8-26             |
| >           | 8-26             |
| >D          | 8-26             |
| >R          | 8-26             |
| А           | 8-27, 8-30, 8-31 |
| A(          | 8-29             |
| ABS         | 8-11             |
| ACOS        | 8-12             |
| AD          | 8-33             |
| AN          | 8-27, 8-30, 8-31 |
| AN(         | 8-29             |
| ASIN        | 8-12             |
| ATAN        | 8-12             |
| AW          | 8-33             |
| BTD         | 8-25             |
| вті         | 8-25             |
| BE          | 8-13             |
| BEC         | 8-13             |
| BEU         | 8-13             |
| BLD         | 8-14             |
| CAD         | 8-24             |

| CALL | 8-13       |  |
|------|------------|--|
| CAW  | 8-24       |  |
| CC   | 8-13       |  |
| CD   | 8-35       |  |
| CDB  | 8-13       |  |
| CLR  | 8-20       |  |
| COS  | 8-12       |  |
| CU   | 8-35       |  |
| DEC  | 8-24       |  |
| DTB  | 8-25       |  |
| DTR  | 8-25       |  |
| EXP  | 8-12       |  |
| FP   | 8-14       |  |
| FR   | 8-33, 8-35 |  |
| FN   | 8-14       |  |
| INC  | 8-24       |  |
| INVD | 8-25       |  |
| INVI | 8-25       |  |
| ITB  | 8-25       |  |
| ITD  | 8-25       |  |
| JBI  | 8-21       |  |
| JC   | 8-21       |  |
| JCB  | 8-21       |  |
| JCN  | 8-21       |  |
| JL   | 8-22       |  |
| JM   | 8-21       |  |
| JMZ  | 8-21       |  |
| JN   | 8-21       |  |
| JNB  | 8-21       |  |
|      |            |  |

| 16, 8-17,             |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
| 29, 8-30,             |
| 29, 8-30,             |
| 29, 8-30,             |
| 29, 8-30,             |
| 29, 8-30,             |
| 29, 8-30,             |
| 29, 8-30,<br>30, 8-32 |
|                       |

| POP  | 8-24             |
|------|------------------|
| PUSH | 8-24             |
| R    | 8-19, 8-33, 8-35 |
| RLD  | 8-18             |
| RLDA | 8-18             |
| RND  | 8-25             |
| RND+ | 8-25             |
| RND- | 8-25             |
| RRD  | 8-18             |
| RRDA | 8-18             |
| S    | 8-19, 8-35       |
| SA   | 8-33             |
| SAVE | 8-20             |
| SD   | 8-33             |
| SE   | 8-33             |
| SET  | 8-20             |
| SIN  | 8-12             |
| SLD  | 8-18             |
| SLW  | 8-18             |
| SP   | 8-33             |
| SQR  | 8-12             |
| SQRT | 8-12             |
| SRD  | 8-18             |
| SRW  | 8-18             |
| SS   | 8-33             |
| SSD  | 8-18             |
| SSI  | 8-18             |
| Т    | 8-22, 8-23, 8-24 |
| TAK  | 8-24             |

| TAN   | 8-12             |
|-------|------------------|
| TAR   | 8-24             |
| TAR1  | 8-23             |
| TAR2  | 8-24             |
| TRUNC | 8-25             |
| UC    | 8-13             |
| Х     | 8-28, 8-30, 8-32 |
| X(    | 8-29             |
| XN    | 8-28, 8-30, 8-32 |
| XN(   | 8-29             |
| XOD   | 8-33             |
| XOW   | 8-33             |

# Abbreviations

| Abbreviation               | Description                                            |
|----------------------------|--------------------------------------------------------|
| /FC                        | First check bit                                        |
| 2#                         | Binary constant                                        |
| а                          | Byte address                                           |
| ACCU                       | Register for processing bytes, words and double words  |
| AR                         | Address registers contain the area-internal or area-   |
| 7.1.2                      | crossing addresses for the instructions addressed      |
|                            | register-indirect                                      |
| h                          | Pit addross                                            |
| B                          | area crossing, register indirect addressed Byte        |
| B (b1 b2)                  | Constant 2Byte                                         |
| B(b1,b2)<br>B(b1 b2 b3 b4) | Constant, 2Dyte                                        |
| B#16#                      | Byte hevadecimal                                       |
| BD#10#                     | Binary result                                          |
| DR                         | Operand range                                          |
|                            | Counter                                                |
| C#                         | Counter constant (BCD-coded)                           |
|                            | Condition code                                         |
|                            | Condition code                                         |
|                            | area-crossing, register-indirect addressed double word |
| D#                         | IFC date constant                                      |
|                            | Data block                                             |
| DBB                        | Data block                                             |
|                            | Data double word in the data block                     |
| DBW                        | Data word in the data block                            |
| DBX                        | Data bit in the data block                             |
| DI                         | Instance data block                                    |
| DIB                        | Data byte in the instance DB                           |
| DID                        | Data double word in the instance DB                    |
| DIW                        | Data word in the instance DB                           |
| DIX                        | Data bit in the instance DB                            |
| DW#16#                     | Double word hexadecimal                                |
| f                          | Timer/Counter No.                                      |
| FB                         | Function block                                         |
| FC                         | Functions                                              |
| g                          | Operand range                                          |
| h                          | Operand range                                          |
|                            | Input (in the PII)                                     |
| i                          | Operand range                                          |
| i8                         | Integer (8Bit)                                         |
| i16                        | Integer (16Bit)                                        |
| i32                        | Integer (32 Bit)                                       |
| IB                         | Input byte (in the PII)                                |
| ID                         | Input double word (in the PII)                         |
| IW                         | Input word (in the PII)                                |
| k8                         | Constant (8 Bit)                                       |
| k16                        | Constant (16 Bit)                                      |
| k32                        | Constant (32 Bit)                                      |
| Abbreviation               | Description                                            |

| L          | Local data                                             |
|------------|--------------------------------------------------------|
| L#         | Integer constant (32Bit)                               |
| LABEL      | Symbolic jump address (max. 4 characters)              |
| LB         | Local data byte                                        |
| LD         | Local data double word                                 |
| LW         | Local data word                                        |
| m          | Pointer constant P#x.y (pointer)                       |
| М          | Bit memory bit                                         |
| MB         | Bit memory byte                                        |
| MD         | Bit memory double word                                 |
| MW         | Bit memory word                                        |
| n          | Binary constant                                        |
| OB         | Organization block                                     |
| OR         | Or                                                     |
| OS         | Stored overflow                                        |
| OV         | Overflow                                               |
| р          | Hexadecimal constant                                   |
| <b>P</b> # | Pointer constant                                       |
| PIQ        | Process image of the outputs                           |
| PII        | Process image of the inputs                            |
| PIB        | Periphery input byte (direct periphery access)         |
| PID        | Periphery input double word (direct periphery access)  |
| PIW        | Periphery input word (direct periphery access)         |
| PQB        | Periphery output byte (direct periphery access)        |
| PQD        | Periphery output double word (direct periphery access) |
| PQW        | Periphery output word (direct periphery access)        |
| Q          | Output (In the PIQ)                                    |
| q<br>OD    | Real number (32bit lioating-point number)              |
| QD         |                                                        |
| QD         | Output double word (in the PIQ)                        |
| QW         | Output word (in the PIQ)                               |
| r          | Block no.                                              |
| RLO        | Result of (previous) logic instruction                 |
| S5T#       | S5 time constant (16Bit), loads the S5-Timer           |
| SFB        | System function block                                  |
| SFC        | System function                                        |
| STA        | Status                                                 |
| Т          | Timer (times)                                          |
| <b>T</b> # | Time constant (16/32Bit)                               |
| TOD#       | IEC time constant                                      |
| W          | area-crossing, register-indirect addressed word        |
| W#16#      | Word hexadecimal                                       |

## Registers

# ACCU1 and The ACCUs are registers for the processing of Byte, words or double words. Therefore the operands are loaded in the ACCUs and combined. The result of the instruction is always in ACCU1.

| ACCU     |            | Bit              |
|----------|------------|------------------|
| ACCUx    | (x=1 to 4) | Bit 0 to Bit 31  |
| ACCUx-L  |            | Bit 0 to Bit 15  |
| ACCUx-H  |            | Bit 16 to Bit 31 |
| ACCUx-LL |            | Bit 0 to Bit 7   |
| ACCUx-LH |            | Bit 8 to Bit 15  |
| ACCUx-HL |            | Bit 16 to Bit 23 |
| ACCUx-HH |            | Bit 24 to Bit 31 |

Address registerThe address registers contain the area-internal or area-crossing addressesAR1 and AR2<br/>(32Bit)The address register-indirect addressed instructions. The address registers are<br/>32Bit wide.

The area-internal or area-crossing addresses have the following structure:

area-internal address: 00000000 00000bbb bbbbbbbb bbbbbxxx

area-crossing address:

10000yyy 00000bbb bbbbbbbb bbbbbxxx

Legend:

b Byte address

- x Bit number
  - Y Range ID

(see chapter "Addressing examples")

#### Status word (16Bit)

The values are analyzed or set by the instructions. The status word is 16Bit wide.

| Bit     | Assignment | Description                            |
|---------|------------|----------------------------------------|
| 0       | /FC        | First check bit*                       |
| 1       | RLO        | Result of (previous) logic instruction |
| 2       | STA        | Status*                                |
| 3       | OR         | Or*                                    |
| 4       | OS         | Stored overflow                        |
| 5       | OV         | Overflow                               |
| 6       | CC0        | Condition code                         |
| 7       | CC1        | Condition code                         |
| 8       | BR         | Binary result                          |
| 9 to 15 | not used   | -                                      |

Bit may not be analyzed with the instruction L STW in the user application, for the Bit isn't updated during application run-time.

# Addressing examples

| Addressing example   | Description                                |  |
|----------------------|--------------------------------------------|--|
| Immediate addressing |                                            |  |
| L +27                | Load 16Bit integer constant "27" in ACCU1. |  |
| L L#-1               | Load 32Bit integer constant "-1" in ACCU1. |  |
| L 2#1010101010101010 | Load binary constant in ACCU1.             |  |
| L DW#16#A0F0_BCFD    | Load hexadecimal constant in ACCU1.        |  |
| L 'End'              | Load ASCII code in ACCU1.                  |  |
| L T#500ms            | Load time value in ACCU1.                  |  |
| L C#100              | Load counter value in ACCU1.               |  |
| L B#(100,12)         | Load constant as 2Byte.                    |  |
| L B#(100,12,50,8)    | Load constant as 4Byte.                    |  |
| L P#10.0             | Load area-internal pointer in ACCU1.       |  |
| L P#E20.6            | Load area-crossing pointer in ACCU1.       |  |
| L -2.5               | Load real number in ACCU1.                 |  |
| L D#1995-01-20       | Load date.                                 |  |
| L TOD#13:20:33.125   | Load time-of-day.                          |  |
| Direct addressing    |                                            |  |
| A I 0.0              | AND operation of input bit 0.0             |  |
| L IB 1               | Load input byte 1 in ACCU1.                |  |
| L IW 0               | Load input word 0 in ACCU1.                |  |
| L ID 0               | Load input double word 0 in ACCU1.         |  |

Indirect addressing timer/counter

| SP T [LW 8]                                                                                                          |                                                                                                                                                                      | Start time                                                                                        | Start timer; timer no. is in local data word 8.                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CU C [LW 10                                                                                                          | ]                                                                                                                                                                    | Start cour                                                                                        | nter; coun                                                                                                                                                                                             | ter no. is in local data word 10.                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Memory-indir                                                                                                         | ect, area-in                                                                                                                                                         | ternal addr                                                                                       | essing                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| A I [LD 12]                                                                                                          |                                                                                                                                                                      | AND instr                                                                                         | uction; in                                                                                                                                                                                             | put address is in local data                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| e.g.: LP#22.2                                                                                                        | 2                                                                                                                                                                    | double wo                                                                                         | ord 12 as                                                                                                                                                                                              | pointer.                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| T LD 12                                                                                                              | 2                                                                                                                                                                    |                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| A I [LD                                                                                                              | 12]                                                                                                                                                                  |                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| A I [DBD 1]                                                                                                          |                                                                                                                                                                      | AND instr                                                                                         | uction; in                                                                                                                                                                                             | put address is in data double                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                                                                                                      |                                                                                                                                                                      | word 1 of the DB as pointer.                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| A Q [DID 12]                                                                                                         |                                                                                                                                                                      | AND instr<br>word 12 o                                                                            | uction; ou<br>f the insta                                                                                                                                                                              | utput address is in data double ance DB as pointer.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| A Q [MD 12]                                                                                                          |                                                                                                                                                                      | AND instr                                                                                         | uction: ou                                                                                                                                                                                             | utput address is in bit memory                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                                      |                                                                                                                                                                      | double wo                                                                                         | ord 12 as                                                                                                                                                                                              | pointer.                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Register-indi                                                                                                        | rect, area-in                                                                                                                                                        | ternal addr                                                                                       | ressing                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| A I [AR1,P#1]                                                                                                        | 2.2]                                                                                                                                                                 | AND instr                                                                                         | uction; in                                                                                                                                                                                             | put address is calculated                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                      |                                                                                                                                                                      | "pointer va                                                                                       | alue in ad                                                                                                                                                                                             | idress register 1 + pointer                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Register-indi                                                                                                        | rect, area-cr                                                                                                                                                        | rossing add                                                                                       | Iressing                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| For the area                                                                                                         | -crossing, r                                                                                                                                                         | egister ind                                                                                       | irect add                                                                                                                                                                                              | ressing the address needs an                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| additional ra                                                                                                        | nge-ID in                                                                                                                                                            | the Bits 2                                                                                        | 4-26. Th                                                                                                                                                                                               | e address is in the address                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                                                                                                      |                                                                                                                                                                      |                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| register.                                                                                                            |                                                                                                                                                                      |                                                                                                   | I                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| register.<br>Range-ID                                                                                                | Binary coo                                                                                                                                                           | de                                                                                                | hex.                                                                                                                                                                                                   | Area                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P                                                                                    | <b>Binary cod</b><br>1000 0 <b>000</b>                                                                                                                               | de                                                                                                | <b>hex.</b><br>80                                                                                                                                                                                      | Area<br>Periphery area                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I                                                                               | <b>Binary cod</b><br>1000 0 <b>000</b><br>1000 0 <b>001</b>                                                                                                          | de                                                                                                | <b>hex.</b><br>80<br>81                                                                                                                                                                                | Area<br>Periphery area<br>Input area                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q                                                                          | <b>Binary cod</b><br>1000 0 <b>000</b><br>1000 0 <b>001</b><br>1000 0 <b>010</b>                                                                                     | de                                                                                                | <b>hex.</b><br>80<br>81<br>82                                                                                                                                                                          | Area<br>Periphery area<br>Input area<br>Output area                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M                                                                     | Binary cod<br>1000 0000<br>1000 0001<br>1000 0010<br>1000 0011                                                                                                       | de                                                                                                | <b>hex.</b><br>80<br>81<br>82<br>83                                                                                                                                                                    | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB                                                               | Binary cod<br>1000 0000<br>1000 0001<br>1000 0010<br>1000 0011<br>1000 0100                                                                                          | de                                                                                                | <b>hex.</b><br>80<br>81<br>82<br>83<br>84                                                                                                                                                              | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB<br>DI                                                         | Binary cod<br>1000 0000<br>1000 0001<br>1000 0010<br>1000 0011<br>1000 0100<br>1000 0101                                                                             | de                                                                                                | <b>hex.</b><br>80<br>81<br>82<br>83<br>84<br>85                                                                                                                                                        | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area<br>Instance data area                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L                                                    | Binary cod<br>1000 0000<br>1000 0001<br>1000 0010<br>1000 0011<br>1000 0100<br>1000 0101                                                                             | de                                                                                                | <b>hex.</b><br>80<br>81<br>82<br>83<br>84<br>85<br>86                                                                                                                                                  | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area<br>Instance data area<br>Local data area                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L<br>VL                                              | Binary cod<br>1000 0000<br>1000 0001<br>1000 0010<br>1000 0011<br>1000 0100<br>1000 0110<br>1000 0111                                                                | de                                                                                                | hex.<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87                                                                                                                                                   | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area<br>Instance data area<br>Local data area<br>Preceding local data area                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L<br>VL                                              | Binary cod<br>1000 0000<br>1000 0001<br>1000 0010<br>1000 0100<br>1000 0100<br>1000 0110<br>1000 0111                                                                | de                                                                                                | <b>hex.</b> 80 81 82 83 84 85 86 87                                                                                                                                                                    | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area<br>Instance data area<br>Local data area<br>Preceding local data area<br>(access to the local data of<br>the calling block)                                                                                                                                                          |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L<br>VL<br>L<br>B [AR1,P#8                           | <b>Binary cod</b><br>1000 0 <b>000</b><br>1000 0 <b>001</b><br>1000 0 <b>010</b><br>1000 0 <b>100</b><br>1000 0 <b>101</b><br>1000 0 <b>110</b><br>1000 0 <b>111</b> | de<br>Load byte                                                                                   | hex.<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>in ACCU                                                                                                                                        | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area<br>Instance data area<br>Local data area<br>Preceding local data area<br>(access to the local data of<br>the calling block)<br>1; the address is calculated                                                                                                                          |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L<br>VL<br>L<br>B [AR1,P#8                           | Binary cod<br>1000 0000<br>1000 0001<br>1000 0010<br>1000 0100<br>1000 0101<br>1000 0110<br>1000 0111                                                                | de<br>Load byte<br>"pointer va                                                                    | hex.<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>in ACCU<br>alue in ad<br>P#8 0"                                                                                                                | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area<br>Instance data area<br>Local data area<br>Preceding local data area<br>(access to the local data of<br>the calling block)<br>D1; the address is calculated<br>dress register 1                                                                                                     |  |  |  |  |  |  |  |  |
| register.<br>Range-ID<br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L<br>VL<br>L B [AR1,P#8<br>A [A P1 D#32                     | Binary cod<br>1000 0000<br>1000 0010<br>1000 0010<br>1000 0100<br>1000 0100<br>1000 0110<br>1000 0111                                                                | de<br>Load byte<br>"pointer va<br>+ pointer l                                                     | hex.<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>in ACCU<br>alue in ad<br>P#8.0".                                                                                                               | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area<br>Instance data area<br>Local data area<br>Preceding local data area<br>(access to the local data of<br>the calling block)<br>11; the address is calculated<br>dress register 1                                                                                                     |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L<br>VL<br>L B [AR1,P#8<br>A [AR1,P#32               | Binary cod<br>1000 0000<br>1000 0010<br>1000 0011<br>1000 0100<br>1000 0101<br>1000 0110<br>1000 0111<br>3.0]                                                        | de<br>Load byte<br>"pointer va<br>+ pointer l<br>AND instr<br>"pointer va                         | hex.         80         81         82         83         84         85         86         87         in ACCU         alue in ad         P#8.0".         uction; op         alue in ad                  | Area<br>Periphery area<br>Input area<br>Output area<br>Bit memory area<br>Data area<br>Instance data area<br>Local data area<br>Preceding local data area<br>(access to the local data of<br>the calling block)<br>D1; the address is calculated<br>dress register 1<br>perand address is calculated<br>dress register 1                                                 |  |  |  |  |  |  |  |  |
| register.<br>Range-ID<br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L<br>VL<br>L B [AR1,P#8<br>A [AR1,P#32                      | <b>Binary cod</b><br>1000 0 <b>000</b><br>1000 0 <b>001</b><br>1000 0 <b>010</b><br>1000 0 <b>100</b><br>1000 0 <b>100</b><br>1000 0 <b>110</b><br>1000 0 <b>111</b> | de<br>Load byte<br>"pointer va<br>+ pointer l<br>AND instr<br>"pointer va<br>+ pointer l          | hex.         80         81         82         83         84         85         86         87         in ACCU         alue in ad         P#8.0".         uction; op         alue in ad         P#32.3". | Area         Periphery area         Input area         Output area         Bit memory area         Data area         Instance data area         Local data area         Preceding local data area         (access to the local data of the calling block)         D1; the address is calculated adress register 1         Derand address is calculated adress register 1 |  |  |  |  |  |  |  |  |
| register.<br><b>Range-ID</b><br>P<br>I<br>Q<br>M<br>DB<br>DI<br>L<br>VL<br>L B [AR1,P#8<br>A [AR1,P#32<br>Addressing | Binary cod<br>1000 0000<br>1000 0010<br>1000 0011<br>1000 0100<br>1000 0100<br>1000 0110<br>1000 0111<br>3.0]<br>3.0]                                                | de<br>Load byte<br>"pointer va<br>+ pointer va<br>AND instr<br>"pointer va<br>+ pointer l<br>ters | hex.<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>in ACCU<br>alue in ad<br>P#8.0".<br>uction; op<br>alue in ad<br>P#32.3".                                                                       | Area         Periphery area         Input area         Output area         Bit memory area         Data area         Instance data area         Local data area         Preceding local data area         (access to the local data of the calling block)         D1; the address is calculated         ddress register 1         berand address is calculated           |  |  |  |  |  |  |  |  |

| Example for pointer calculation | Example when s | um of bit addresses $\leq$ 7:                                             |
|---------------------------------|----------------|---------------------------------------------------------------------------|
|                                 | LAR1 P#8.2     |                                                                           |
|                                 | A I [AR1,P#10  | .2]                                                                       |
|                                 | Result:        | The input 18.4 is addressed (by adding the byte and bit addresses)        |
|                                 | Example when s | um of bit addresses > 7:                                                  |
|                                 | L MD 0<br>LAR1 | at will calculated pointer, e.g. P#10.5                                   |
|                                 | A I [AR1,P#10  | .7]                                                                       |
|                                 | Result:        | Addressed is input 21.4 (by adding the byte and bit addresses with carry) |

### Chapter 9 Instruction list

| Command | Operand | Parameter |    |     | St  | tatu | ıs ۱ | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|------|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov   | os   | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |     |      |      |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |      |     |     |     |     | : Instruction influences |              |

# Math instructions

| Fixed-<br>(16Bit  | -point arithmetic<br>)   | Status word                    | Math instructions of two 16Bit numbers. The result is in ACCU1 res. ACCU1-L.                                              |   |
|-------------------|--------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|---|
| +1                | -                        | BR CC1 CC0 OV OS OR STARLO /FC | Add up two integers (16Bit).                                                                                              | 1 |
|                   |                          |                                | (ACCU1-L)=(ACCU1-L)+(ACCU2-L)                                                                                             |   |
| -1                | -                        | - Y Y Y Y                      | Subtract two integers (16Bit).                                                                                            | 1 |
|                   |                          |                                | (ACCU1-L)=(ACCU2-L)-(ACCU1-L)                                                                                             |   |
| *                 | -                        | -                              | Multiply two integers (16Bit).                                                                                            | 1 |
|                   |                          |                                | (ACCU1-L)=(ACCU2-L)*(ACCU1-L)                                                                                             |   |
| /I                | -                        | -                              | Divide two integers (16Bit).                                                                                              | 1 |
|                   |                          |                                | (ACCU1-L)=(ACCU2-L):(ACCU1-L)                                                                                             |   |
|                   |                          |                                | The remainder is in ACCU1-H.                                                                                              |   |
| Fixed-<br>(32Bit  | -point arithmetic<br>)   | Status word                    | Math instructions of two 32Bit numbers. The result is in ACCU1.                                                           |   |
| +D                | -                        | BR CC1 CC0 OV OS OR STARLO /FC | Add up two integers (32Bit).                                                                                              | 1 |
|                   |                          |                                | (ACCU1)=(ACCU2)+(ACCU1)                                                                                                   |   |
| -D                | -                        | - Y Y Y Y                      | Subtract two integers (32Bit).                                                                                            | 1 |
|                   |                          |                                | (ACCU1)=(ACCU2)-(ACCU1)                                                                                                   |   |
| *D                | -                        |                                | Multiply two integers (32Bit).                                                                                            | 1 |
|                   |                          |                                | (ACCU1)=(ACCU2)*(ACCU1)                                                                                                   |   |
| /D                | -                        |                                | Divide two integers (32Bit).                                                                                              | 1 |
|                   |                          |                                | (ACCU1)=(ACCU2):(ACCU1)                                                                                                   |   |
| MOD               | -                        |                                | Divide two integers (32Bit) and load the rest of the                                                                      | 1 |
|                   |                          |                                | division in ACCU1.                                                                                                        |   |
|                   |                          |                                | (ACCU1)=remainder of [(ACCU2):(ACCU1)]                                                                                    |   |
| Floatii<br>(32Bit | ng-point arithmetic<br>) | Status word                    | The result of the math instructions is in ACCU1. The execution time of the instruction depends on the value to calculate. |   |
| +R                | -                        | BR CC1 CC0 OV OS OR STARLO /FC | Add up two real numbers (32Bit)                                                                                           | 1 |
|                   |                          |                                | (ACCU1)=(ACCU2)+(ACCU1)                                                                                                   |   |
| -R                | -                        | - Y Y Y Y                      | Subtract two real numbers (32Bit).                                                                                        | 1 |
|                   |                          |                                | (ACCU1)=(ACCU2)-(ACCU1)                                                                                                   |   |
| *R                | -                        |                                | Multiply two real numbers (32Bit).                                                                                        | 1 |
|                   |                          |                                | (ACCU1)=(ACCU2)*(ACCU1)                                                                                                   |   |
| /R                | -                        | _                              | Divide two real numbers (32Bit).                                                                                          | 1 |
|                   |                          |                                | (ACCU1)=(ACCU2):(ACCU1)                                                                                                   |   |
| NEGR              | -                        | BR CC1CC0 OV OS OR STARLO /FC  | Negate the real number in ACCU1.                                                                                          | 1 |
|                   |                          |                                | 1                                                                                                                         |   |
| ABS               | -                        |                                | Form the absolute value of the real number in ACCU1.                                                                      | 1 |

### Chapter 9 Instruction list

### CPU ADAM 821x

| Command | Operand | Parameter |    |     | s   | tati | us | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | OV   | os | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |     |      |    |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |    |     |     |     |     | : Instruction influences |              |

| Squar<br>instrue  | e root an so<br>ctions (32B | quare<br>it) | Status word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The result of the instructions is in ACCU1. The instructions may be interrupted by alarms.                                                  |   |
|-------------------|-----------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---|
| SQRT              | -                           |              | BR         CC1         CC0         OV         OS         OR         STARLO         /FC           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -  | Calculate the Square root of a real number in ACCU1.                                                                                        | 1 |
| SQR               | -                           |              | - Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Form the square of a real number in ACCU1.                                                                                                  | 1 |
| Logari<br>(32Bit) | ithmic func<br>)            | tion         | Status word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The result of the logarithm function is in ACCU1. The instructions may be interrupted by alarms.                                            |   |
| LN                | -                           |              | BR CC1 CC0 OV OS OR STARLO /FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calculate the natural logarithm of a real number in ACCU1.                                                                                  | 1 |
| EXP               | -                           |              | - Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calculate the exponential value of a real number in ACCU1 on basis e (=2.71828).                                                            | 1 |
| Trigon<br>(32Bit) | ometrical f                 | unctions     | Status word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The result of the trigonometrical function is in ACCU1. The instructions may be interrupted by alarms.                                      |   |
| SIN <sup>1</sup>  | -                           |              | BR         CC1         CC0         OV         OS         OR         STA RLO         /FC           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | Calculate the sine of the real number.                                                                                                      | 1 |
| ASIN <sup>2</sup> | -                           |              | - Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calculate the arcsine of the real number.                                                                                                   | 1 |
| COS <sup>1</sup>  | -                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculate the cosine of the real number.                                                                                                    | 1 |
| ACOS <sup>2</sup> | -                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculate the arccosine of the real number.                                                                                                 | 1 |
| TAN <sup>1</sup>  | -                           |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calculate the tangent of the real number.                                                                                                   | 1 |
| ATAN <sup>2</sup> | -                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculate the arctangent of the real number.                                                                                                | 1 |
| Additi            | on of const                 | ants         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Addition of integer constants to ACCU1. The condition code bits are not affected                                                            |   |
| +                 | i8                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add an 8Bit integer constant.                                                                                                               | 1 |
| +                 | i16                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add a 16Bit integer constant.                                                                                                               | 2 |
| +                 | i32                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add a 32Bit integer constant.                                                                                                               | 3 |
| Additie<br>addres | on via<br>ss register       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Adding a 16Bit integer to contents of address register. The value is in the instruction or in ACCU1-L. Condition code bits are not affected |   |
| +AR1              | -                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add the contents of ACCU1-L to AR1.                                                                                                         | 1 |
| +AR1              | m                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add a pointer constant to the contents of AR1.                                                                                              | 2 |
| +AR2              | -                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add the contents of ACCU1-L to those of AR2.                                                                                                | 1 |
| +AR2              | m                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add pointer constant to the contents of AR2.                                                                                                | 2 |

1 Specify the angle in radians; the angle must be given as a floating point value in ACCU 1.

2 The result is an angle in radians.

### Chapter 9 Instruction list

|         |         |           |    |     |       |      |      |      |     |     |     |                          | Length |
|---------|---------|-----------|----|-----|-------|------|------|------|-----|-----|-----|--------------------------|--------|
| Command | Operand | Parameter |    |     | Sta   | atus | s w  | /orc | t   |     |     | Function                 | in     |
|         |         |           | BR | CC1 | CC0 C | ov c | os d | OR   | STA | RLO | /FC |                          | words  |
|         |         |           |    |     |       |      |      |      |     |     |     | : Instruction depends on |        |
|         |         |           |    |     |       |      |      |      |     |     |     | : Instruction influences |        |

# **Block instructions**

| Block call instructions Status word |                                                           |        |              |               |          | us           | wc           | ord          |               |        |               |                                                                                                                                                                        |     |
|-------------------------------------|-----------------------------------------------------------|--------|--------------|---------------|----------|--------------|--------------|--------------|---------------|--------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| CALL                                | FB r, DB r                                                |        | BR           | CC1           | CC0      | ov           | os           | OR           | STA           | RLC    | /FC           | Unconditional call of a FB, with parameter transfer                                                                                                                    | 1   |
|                                     |                                                           |        | -            | -             | -        | -            | -            | -            | -             | -      | -             |                                                                                                                                                                        |     |
| CALL                                | SFB r, DB r                                               |        | -            | -             | -        | -            | 0            | 0            | 1             | -      | 0             | Unconditional call of a SFB, with parameter transfer                                                                                                                   | 2   |
| CALL                                | FC r                                                      |        |              |               |          |              |              |              |               |        |               | Unconditional call of a function, with parameter transfer                                                                                                              | 1   |
| CALL                                | SFC r                                                     |        |              |               |          |              |              |              |               |        |               | Unconditional call of a SFC, with parameter transfer                                                                                                                   | 2   |
| UC                                  | FB r                                                      |        | -            |               |          |              |              |              |               |        |               | Unconditional call of blocks, without parameter                                                                                                                        | 1   |
|                                     | FC r                                                      |        |              |               |          |              |              |              |               |        |               | transfer                                                                                                                                                               |     |
|                                     | Parameter                                                 |        |              |               |          |              |              |              |               |        |               | FB/FC call via parameters                                                                                                                                              |     |
| СС                                  | FB r                                                      |        | BR           | CC1           | CC0      | ov           | os           | OR           | STA           | RLC    | /FC           | Conditional call of blocks, without parameter                                                                                                                          | 1   |
|                                     | FC r                                                      |        | -            | -             | 1        | -            | -            | -            | -             | Υ      | -             | transfer                                                                                                                                                               |     |
|                                     | Parameter                                                 |        | -            | -             | -        | -            | 0            | 0            | 1             | -      | 0             | FB/FC call via parameters                                                                                                                                              |     |
| OPN                                 |                                                           |        | BR           | CC1           | CC0      | ov           | os           | OR           | STA           | RLC    | /FC           |                                                                                                                                                                        |     |
|                                     | DB r                                                      |        | -            | -             | -        | -            | -            | -            | -             | -      | -             | Open a data block                                                                                                                                                      | 1/2 |
|                                     | DI r                                                      |        | -            | -             | -        | -            | -            | -            | -             | -      | -             | Open a instance data block                                                                                                                                             | 2   |
|                                     | Parameter                                                 |        |              |               |          |              |              |              |               |        |               | Open a data block via parameter                                                                                                                                        | 2   |
| Block                               | end instru                                                | ctions |              |               | St       | tati         | us           | wc           | ord           |        |               |                                                                                                                                                                        |     |
| BE                                  |                                                           |        | BR<br>-      | CC1<br>-      | ссо<br>- | ov<br>-      | os<br>-      | OR<br>-      | STA           | RLC    | /FC<br>-      | End block.                                                                                                                                                             | 1   |
| BEU                                 |                                                           |        | -            | -             | -        | -            | 0            | 0            | 1             | -      | 0             | End block unconditionally.                                                                                                                                             | 1   |
| BEC                                 |                                                           |        | BR<br>-<br>- | CC1<br>-<br>- | -        | ov<br>-<br>- | os<br>-<br>Y | or<br>-<br>0 | sтл<br>-<br>1 | Y<br>1 | /FC<br>-<br>0 | End block if RLO="1".                                                                                                                                                  |     |
| Excha<br>block<br>block             | Exchanging shared data<br>block an instance data<br>block |        |              |               |          |              |              |              |               |        |               | Exchanging the two current data blocks. The current shared data block becomes the current instance data block and vice versa. The condition code bits are not affected |     |
| CDB                                 |                                                           |        |              |               |          |              |              |              |               |        |               | Exchange shared data block and instant data block.                                                                                                                     | 1   |

| Command | Operand | Parameter |    |     | St    | atus | s wo | ord | 1    |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-------|------|------|-----|------|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 ( | o vo | s o  | R S | STAF | RLO | /FC |                          | words        |
|         |         |           |    |     |       |      |      |     |      |     |     | : Instruction depends on |              |
|         |         |           |    |     |       |      |      |     |      |     |     | : Instruction influences |              |

# Program display and null instruction instructions

| Progra<br>operat | am display<br>tion instru | and null ntions | The status word is not affected.                         |   |
|------------------|---------------------------|-----------------|----------------------------------------------------------|---|
| BLD              | 0 255                     |                 | Program display instruction:                             | 1 |
|                  |                           |                 | is treated by the CPU like a null operation instruction. |   |
| NOP              | 0                         |                 | Null operation instruction                               | 1 |
|                  | 1                         |                 |                                                          |   |

# **Edge-triggered instructions**

| Edge-1 | triggered i | nstructions   | Status word                    | Detection of an edge change. The current signal state of the RLO is compared with the signal state of the instruction or edge bit memory.<br>FP detects a change in the RLO from "0" to "1". |   |
|--------|-------------|---------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|        | 1           | 1             |                                | "0".                                                                                                                                                                                         |   |
| FP     | I/Q a.b     | 0.0 to 127.7  | BR CC1 CC0 OV OS OR STARLO /FC | Detecting the positive edge in the RLO. The bit addressed                                                                                                                                    | 2 |
|        | M a.b       | 0.0 to 1023.7 | Y -                            | in the instruction is the auxiliary edge bit memory.                                                                                                                                         | 2 |
|        | L a.b       | 0.0 to 1043.7 | 0 Y Y 1                        |                                                                                                                                                                                              | 2 |
|        | DBX a.b     | 0.0 to 8191.7 |                                |                                                                                                                                                                                              | 2 |
|        | DIX a.b     | 0.0 to 8191.7 |                                |                                                                                                                                                                                              | 2 |
|        | c [AR1,m]   |               |                                |                                                                                                                                                                                              | 2 |
|        | c [AR2,m]   |               |                                |                                                                                                                                                                                              | 2 |
|        | [AR1,m]     |               |                                |                                                                                                                                                                                              | 2 |
|        | [AR2,m]     |               |                                |                                                                                                                                                                                              | 2 |
|        | Parameter   |               |                                |                                                                                                                                                                                              | 2 |
| FN     | I/Q a.b     | 0.0 to 127.7  | BR CC1CC0 OV OS OR STARLO /FC  | Detecting the negative edge in the RLO. The bit addressed                                                                                                                                    | 2 |
|        | M a.b       | 0.0 to 1023.7 | Y -                            | in the instruction is the auxiliary edge bit memory.                                                                                                                                         | 2 |
|        | L a.b       | 0.0 to 1043.7 | 0 Y Y 1                        |                                                                                                                                                                                              | 2 |
|        | DBX a.b     | 0.0 to 8191.7 |                                |                                                                                                                                                                                              | 2 |
|        | DIX a.b     | 0.0 to 8191.7 |                                |                                                                                                                                                                                              | 2 |
|        | c [AR1,m]   |               |                                |                                                                                                                                                                                              | 2 |
|        | c [AR2,m]   |               |                                |                                                                                                                                                                                              | 2 |
|        | [AR1,m]     |               |                                |                                                                                                                                                                                              | 2 |
|        | [AR2,m]     |               |                                |                                                                                                                                                                                              | 2 |
|        | Parameter   |               |                                |                                                                                                                                                                                              | 2 |

# Chapter 9 Instruction list

| <b>•</b> • | <b>a</b> 1 | <b>D</b> ( |    |       | ~     |     |    |       |     |     | <b>–</b> "               | Length |
|------------|------------|------------|----|-------|-------|-----|----|-------|-----|-----|--------------------------|--------|
| Command    | Operand    | Parameter  |    |       | Sta   | tus | wo | ra    |     |     | Function                 | ın     |
|            |            |            | BR | CC1 C | C0 0\ | os  | OF | R STA | RLO | /FC |                          | words  |
|            |            |            |    |       |       |     |    |       |     |     | : Instruction depends on |        |
|            |            |            |    |       |       |     |    |       |     |     | : Instruction influences |        |

# Load instructions

| Load i | nstruction | S         | Loading address identifiers into ACCU1. The contents of ACCU1 and ACCU2 are saved first. |     |
|--------|------------|-----------|------------------------------------------------------------------------------------------|-----|
|        |            |           |                                                                                          |     |
| L      | 15         | 0 40 407  |                                                                                          | 4/0 |
|        | ва         | 0 to 127  | input byte                                                                               | 1/2 |
|        | QB a       | 0 to 127  | output byte                                                                              | 1/2 |
|        | PIB a      | 0 to 1023 | periphery input byte                                                                     | 2   |
|        | MB a       | 0 to 1023 | bit memory byte                                                                          | 1/2 |
|        | LB a       | 0 to 1043 | local data byte                                                                          | 2   |
|        | DBB a      | 0 to 8191 | data byte                                                                                | 2   |
|        | DIB a      | 0 to 8191 | instance data byte                                                                       | 2   |
|        |            |           | in ACCU1                                                                                 | 2   |
|        | g [AR1,m]  |           | register-indirect, area-internal (AR1)                                                   | 2   |
|        | g [AR2,m]  |           | register-indirect, area-internal (AR2)                                                   | 2   |
|        | B [AR1,m]  |           | area-crossing (AR1)                                                                      | 2   |
|        | B [AR2,m]  |           | area-crossing (AR2)                                                                      | 2   |
|        | Parameter  |           | via parameters                                                                           | 2   |
| L      |            |           | Load                                                                                     |     |
|        | IW a       | 0 to 126  | input word                                                                               | 1/2 |
|        | QW a       | 0 to 126  | output word                                                                              | 1/2 |
|        | PIW a      | 0 to 1022 | periphery input word                                                                     |     |
|        | MW a       | 0 to 1022 | bit memory word                                                                          | 1/2 |
|        | LW a       | 0 to 1042 | local data word                                                                          | 2   |
|        | DBW a      | 0 to 8190 | data word                                                                                | 1/2 |
|        | DIW a      | 0 to 8190 | instance data word                                                                       | 1/2 |
|        |            |           | in ACCU1-L                                                                               |     |
|        | h [AR1,m]  |           | register-indirect, area-internal (AR1)                                                   | 2   |
|        | h [AR2,m]  |           | register-indirect, area-internal (AR2)                                                   | 2   |
|        | W [AR1,m]  |           | area-crossing (AR1)                                                                      | 2   |
|        | W [AR2,m]  |           | area-crossing (AR2)                                                                      | 2   |
|        | Parameter  |           | via parameters                                                                           | 2   |

### Chapter 9 Instruction list

### CPU ADAM 821x

| Command | Operand | Parameter |    |     | S   | tatu | usv | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|-----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov   | os  | OR  | ST/ | RLO | /FC |                          | words        |
|         |         |           |    |     |     |      |     |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |     |     |     |     |     | : Instruction influences |              |

| - |                    |           |                                                   |     |
|---|--------------------|-----------|---------------------------------------------------|-----|
| L |                    |           | Load                                              |     |
|   | ID a               | 0 to 124  | input double word.                                | 1/2 |
|   | QD a               | 0 to 124  | output double word.                               | 1/2 |
|   | PID a              | 0 to 1020 | periphery input double word.                      | 2   |
|   | MD a               | 0 to 1020 | bit memory double word.                           | 1/2 |
|   | LD a               | 0 to 1040 | local data double word.                           | 2   |
|   | DBD a              | 0 to 8188 | data double word.                                 | 2   |
|   | DID a              | 0 to 8188 | instance data double word.                        | 2   |
|   |                    |           | in ACCU1-L.                                       |     |
|   | i [AR1,m]          |           | register-indirect, area-internal (AR1)            | 2   |
|   | i [AR2,m]          |           | register-indirect, area-internal (AR2)            | 2   |
|   | D [AR1,m]          |           | area-crossing (AR1)                               | 2   |
|   | D [AR2,m]          |           | area-crossing (AR2)                               | 2   |
|   | Parameter          |           | via parameters                                    | 2   |
| L |                    |           | Load                                              |     |
|   | k8                 |           | 8Bit constant in ACCU1-LL.                        | 1   |
|   | k16                |           | 16Bit constant in ACCU1-L.                        | 2   |
|   | k32                |           | 32Bit constant in ACCU1.                          | 3   |
|   | Parameter          |           | Load constant in ACCU1 (addressed via parameters) | 2   |
| L | 2#n                |           | Load 16Bit binary constant in ACCU1-L.            | 2   |
|   |                    |           | Load 32Bit binary constant in ACCU1.              | 3   |
| L | B#8#p              |           | Load 8Bit hexadecimal constant in ACCU1-LL.       | 1   |
|   | W#16#p             |           | Load 16Bit hexadecimal constant in ACCU1-L.       | 2   |
|   | DW#16#p            |           | Load 32Bit hexadecimal constant in ACCU1.         | 3   |
| L | x                  |           | Load one character.                               |     |
| L | xx                 |           | Load two characters.                              | 2   |
| L | xxx                |           | Load three characters.                            |     |
| L | xxxx               |           | Load four characters.                             | 3   |
| L | D# Date            |           | Load IEC-date (BCD-coded).                        | 3   |
| L | S5T#               |           | Load time constant (16Bit).                       | 2   |
|   | time value         |           |                                                   |     |
| L | TOD#<br>time value |           | Load 32Bit time constant.                         | 3   |
|   | T# time            |           | (IEC-time-of-day)                                 | 2   |
| - | value              |           |                                                   | 3   |
|   | C# counter         |           | Load 16Bit counter constant                       | 2   |
|   | value              |           |                                                   |     |
| L | P# bit             |           | Load bit pointer.                                 | 3   |
|   | l # Integer        |           | Load 32Bit integer constant                       | 3   |
|   | Real               |           | Load real number                                  | 3   |
| - |                    |           |                                                   | , J |

### Chapter 9 Instruction list

| Command | Operand | Parameter |      |     | St  | atu | JS | woi | rd |     |     | Function                 | Length<br>in |
|---------|---------|-----------|------|-----|-----|-----|----|-----|----|-----|-----|--------------------------|--------------|
|         |         |           | BR 0 | CC1 | 000 | vc  | os | OR  | ST | RLO | /FC |                          | words        |
|         |         |           |      |     |     |     |    |     |    |     |     | : Instruction depends on |              |
|         |         |           |      |     |     |     |    |     |    |     |     | : Instruction influences |              |

| Load i<br>and co | instruction<br>ounter | s for timer | Load a time or coun<br>the recent conten<br>ACCU2.<br>The status word is n | ter value in ACCU1, before<br>nt of ACCU1 is saved in<br>ot affected. |     |
|------------------|-----------------------|-------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----|
| L                | Τf                    | 0 to 127    | Load time value.                                                           |                                                                       | 1/2 |
|                  | Timer<br>parameter    |             | Load time value (address                                                   | ed via parameters).                                                   | 2   |
| L                | C f                   | 0 to 255    | Load counter value.                                                        |                                                                       | 1/2 |
|                  | Counter<br>parameter  |             | Load counter value (addre                                                  | essed via parameters).                                                | 2   |
| LD               | Τf                    | 0 to 127    | Load time value BCD-cod                                                    | led.                                                                  | 1/2 |
|                  | Timer<br>parameter    |             | Load time value BCD-cod                                                    | led (addressed via parameters).                                       | 2   |
| LD               | C f                   | 0 to 255    | Load counter value BCD-                                                    | coded.                                                                | 1/2 |
|                  | Counter parameter     |             | Load counter value BCD-<br>parameters).                                    | coded (addressed via                                                  | 2   |

| Command | Operand | Parameter |    |     | St    | atu  | is v | vor | d   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-------|------|------|-----|-----|-----|-----|--------------------------|--------------|
|         | -       |           | BR | CC1 | CC0 ( | ov ( | os   | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |       |      |      |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |       |      |      |     |     |     |     | : Instruction influences |              |

# **Shift instructions**

| Shift i | nstructions   |     |          |       | Sta   | ntus       | 5 W   | or  | ď   |     |            | Shifting the contents of ACCU1 and ACCU1-L<br>to the left or right by the specified number of<br>places. If no address identifier is specified, shift<br>the number of places into ACCU2-LL. Any<br>positions that become free are padded with<br>zeros or the sign. |   |
|---------|---------------|-----|----------|-------|-------|------------|-------|-----|-----|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| SLW     | -             |     |          | 001   |       |            |       |     |     |     | <b>150</b> | Shift the contents of ACCU1-L to the left.                                                                                                                                                                                                                           | 1 |
| SLW     | 0 15          |     | <u>-</u> | -     | -     |            |       | -   | -   | -   | -          | Positions that become free are provided with zeros                                                                                                                                                                                                                   |   |
| SLD     | -             |     | _        | Y     | v     | <b>Y</b> . |       |     | _   | -   | -          | Shift the contents of ACCU1 to the left                                                                                                                                                                                                                              | 1 |
| SLD     | 0 32          |     |          |       |       |            |       |     |     |     |            | Positions that become free are provided with zeros                                                                                                                                                                                                                   |   |
| SRW     | -             |     |          |       |       |            |       |     |     |     |            | Shift the contents of ACCU1-L to the right                                                                                                                                                                                                                           | 1 |
| SRW     | 0 15          |     |          |       |       |            |       |     |     |     |            | Positions that become free are provided with zeros                                                                                                                                                                                                                   |   |
| SRD     | -             |     |          |       |       |            |       |     |     |     |            | Shift the contents of ACCU1 to the right                                                                                                                                                                                                                             | 1 |
| SRD     | 0 32          |     |          |       |       |            |       |     |     |     |            | Positions that become free are provided with zeros                                                                                                                                                                                                                   |   |
| SSI     | -             |     |          |       |       |            |       |     |     |     |            | Shift the contents of ACCI 1-1 to the right with sign                                                                                                                                                                                                                | 1 |
| SSI     | 0 15          |     |          |       |       |            |       |     |     |     |            | Positions that become free are provided with the sign                                                                                                                                                                                                                |   |
| 001     | 010           |     |          |       |       |            |       |     |     |     |            | (Bit 15)                                                                                                                                                                                                                                                             |   |
| SSD     | -             |     |          |       |       |            |       |     |     |     |            | Shift the contents of ACCU1 to the right with sign                                                                                                                                                                                                                   | 1 |
| SSD     | 0 32          |     |          |       |       |            |       |     |     |     |            |                                                                                                                                                                                                                                                                      | • |
| Rotati  | on instructio | ons |          |       | Sta   | ntus       | s w   | 'or | ď   |     |            | Rotate the contents of ACCU1 to the left or right by the specified number of places. If no address identifier is specified, rotate the number of places into ACCU2-LL.                                                                                               |   |
| RLD     | -             |     | BR       | CC1 C | :C0 C | ov o       | s o   | RS  | TAF | RLO | /FC        | Rotate the contents of ACCU1 to the left.                                                                                                                                                                                                                            | 1 |
| RLD     | 0 32          |     | -        | -     | -     | -   .      | -   - | -   | -   | -   | -          |                                                                                                                                                                                                                                                                      |   |
| RRD     | -             |     | -        | Υ     | Y١    | Υ·         |       | -   | -   | -   | -          | Rotate the contents of ACCU1 to the right.                                                                                                                                                                                                                           | 1 |
| RRD     | 0 32          |     |          |       |       |            |       |     |     |     |            |                                                                                                                                                                                                                                                                      |   |
| RLDA    | -             |     | BR       | CC1 C | :C0 C | ov o       | s o   | RS  | TAF | RLO | /FC        | Rotate the contents of ACCU1 one bit position to the left,                                                                                                                                                                                                           |   |
|         |               |     | -        | -     | -     |            | -   - | -   | -   | -   | -          | via CC1 bit.                                                                                                                                                                                                                                                         |   |
| RRDA    | -             |     | -        | Υ     | 0 0   | 0.         | -   - | -   | -   | -   | -          | Rotate the contents of ACCU1 one bit position to the right,                                                                                                                                                                                                          |   |
|         |               |     |          |       |       | 1_         |       |     |     |     |            | via CC1 bit.                                                                                                                                                                                                                                                         |   |

| Command | Operand | Parameter |    |     | S   | tati | usv | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|-----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | OV   | os  | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |     |      |     |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |     |     |     |     |     | : Instruction influences |              |

# Setting/resetting bit addresses

| Set/Re | eset bit add | dresses       | Status word                    | Assign the value "1" or "0" or the RLO to the addressed instructions. |     |
|--------|--------------|---------------|--------------------------------|-----------------------------------------------------------------------|-----|
| S      |              |               | BR CC1CC0 OV OS OR STARLO /FC  | Set                                                                   |     |
|        | I/Q a.b      | 0.0 to 127.7  | Y -                            | input/output to "1".                                                  | 1/2 |
|        | M a.b        | 0.0 to 1023.7 | 0 Y - 0                        | set bit memory to "1".                                                | 1/2 |
|        | L a.b        | 0.0 to 1043.7 |                                | local data bit to "1".                                                | 2   |
|        | DBX a.b      | 0.0 to 8191.7 |                                | data bit to "1".                                                      | 2   |
|        | DIX a.b      | 0.0 to 8191.7 |                                | instance data bit to "1".                                             | 2   |
|        | c [AR1,m]    |               |                                | register-indirect, area-internal (AR1)                                | 2   |
|        | c [AR2,m]    |               |                                | register-indirect, area-internal (AR2)                                | 2   |
|        | [AR1,m]      |               |                                | area-crossing (AR1)                                                   | 2   |
|        | [AR2,m]      |               |                                | area-crossing (AR2)                                                   | 2   |
|        | Parameter    |               |                                | via parameters                                                        | 2   |
| R      |              |               | BR CC1 CC0 OV OS OR STARLO /FC | Reset                                                                 |     |
|        | I/Q a.b      | 0.0 to 127.7  | Y -                            | input/output to "0".                                                  | 1/2 |
|        | M a.b        | 0.0 to 1023.7 | 0 Y - 0                        | set bit memory to "0".                                                | 1/2 |
|        | L a.b        | 0.0 to 1043.7 |                                | local data bit to "0".                                                | 2   |
|        | DBX a.b      | 0.0 to 8191.7 |                                | data bit to "0".                                                      | 2   |
|        | DIX a.b      | 0.0 to 8191.7 |                                | instance data bit to "0".                                             | 2   |
|        | c [AR1,m]    |               | ]                              | register-indirect, area-internal (AR1)                                | 2   |
|        | c [AR2,m]    |               |                                | register-indirect, area-internal (AR2)                                | 2   |
|        | W [AR1,m]    |               |                                | area-crossing (AR1)                                                   | 2   |
|        | W [AR2,m]    |               |                                | area-crossing (AR2)                                                   | 2   |
|        | Parameter    |               |                                | via parameters                                                        | 2   |
| =      |              |               | BR CC1CC0 OV OS OR STARLO /FC  | Assign                                                                |     |
|        | l/Q a.b      | 0.0 to 127.7  | Y -                            | RLO to input/output                                                   | 1/2 |
|        | M a.b        | 0.0 to 1023.7 | 0 Y - 0                        | RLO to bit memory                                                     | 1/2 |
|        | L a.b        | 0.0 to 1043.7 |                                | RLO to local data bit                                                 | 2   |
|        | DBX a.b      | 0.0 to 8191.7 |                                | RLO to data bit                                                       | 2   |
|        | DIX a.b      | 0.0 to 8191.7 |                                | RLO to instance data bit                                              | 2   |
|        | c [AR1,m]    |               |                                | register-indirect, area-internal (AR1)                                | 2   |
|        | c [AR2,m]    |               |                                | register-indirect, area-internal (AR2)                                | 2   |
|        | [AR1,m]      |               |                                | area-crossing (AR1)                                                   | 2   |
|        | [AR2,m]      |               |                                | area-crossing (AR2)                                                   | 2   |
|        | Parameter    |               |                                | via parameters                                                        | 2   |

### Chapter 9 Instruction list

### CPU ADAM 821x

| Command | Operand | Parameter |    |       | Sta   | atus | 5 W | vor | d   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-------|-------|------|-----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 C | :C0 C | ov c | s   | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |       |       |      |     |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |       |       |      |     |     |     |     |     | : Instruction influences |              |

| Instruc<br>affecti | ctions dire | ectly<br>O |    |     | St  | ati | us | wc | orc | d   |    |     | The following instructions have a directly effect on the RLO. |   |
|--------------------|-------------|------------|----|-----|-----|-----|----|----|-----|-----|----|-----|---------------------------------------------------------------|---|
| CLR                |             |            | BR | CC1 | CC0 | ov  | os | OR | ST  | ARL | 0/ | /FC | Set RLO to "0".                                               | 1 |
|                    |             |            | -  | -   | -   | -   | -  | -  | -   | · - |    | -   |                                                               | l |
|                    |             |            | -  | -   | -   | -   | -  | 0  | 0   | ) 0 | 1  | 0   |                                                               | l |
| SET                |             |            | BR | CC1 | CC0 | ov  | os | OR | ST  | ARL | 0/ | /FC | Set RLO to "1".                                               | 1 |
|                    |             |            | -  | -   | -   | -   | -  | -  | -   | · - |    | -   |                                                               | l |
|                    |             |            | -  | -   | -   | -   | -  | 0  | 1   | 1   |    | 0   |                                                               | l |
| NOT                |             |            | BR | CC1 | CC0 | ov  | os | OR | ST  | ARL | 0/ | /FC | Negate RLO.                                                   | 1 |
|                    |             |            | -  | -   | -   | -   | -  | Y  | -   | ·Y  | •  | -   |                                                               | l |
|                    |             |            | -  | -   | -   | -   | -  | -  | 1   | Υ   | •  | -   |                                                               | I |
| SAVE               |             |            | BR | CC1 | CC0 | ov  | os | OR | ST  | ARL | 0/ | /FC | Saving RLO into BR-Bit.                                       | 1 |
|                    |             |            | -  | -   | -   | -   | -  | -  | -   | . Y | •  | -   |                                                               | I |
|                    |             |            | Y  | -   | -   | -   | -  | -  | -   | · - |    | -   |                                                               | L |

### Chapter 9 Instruction list

| Command | Operand | Parameter |    |     | S   | Stat | us | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov   | os | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |     |      |    |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |    |     |     |     |     | : Instruction influences |              |

# Jump instructions

| Jump | instructions | Status word Jump, depending on conditions.                                                                                                                                                                     |     |
|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      |              | Please note that the jump destination always<br>forms the <b>beginning</b> of a Boolean logic string<br>in the case of jump instructions. The jump<br>destination must not be included in the logic<br>string. |     |
| JU   | LABEL        | BR CC1CC0 OV OS OR STARLO /FC Jump unconditionally.                                                                                                                                                            | 1⁄2 |
|      |              |                                                                                                                                                                                                                |     |
|      |              |                                                                                                                                                                                                                |     |
| JC   | LABEL        | BR CC1 CC0 OV OS OR STARLO /FC JUMP if RLO="1".                                                                                                                                                                | 1⁄2 |
| JCN  | LABEL        | Y - Jump if RLO="0".                                                                                                                                                                                           | 2   |
|      |              | 0 1 1 0                                                                                                                                                                                                        |     |
| JCB  | LABEL        | BR CC1CC0 OV OS OR STARLO /FC Jump if RLO="1".                                                                                                                                                                 | 2   |
|      |              | Y - Save the RLO in the BR-Bit                                                                                                                                                                                 |     |
| JNB  | LABEL        | Y 0 1 1 0 Jump if RLO="0".                                                                                                                                                                                     | 2   |
|      |              | Save the RLO in the BR-Bit                                                                                                                                                                                     |     |
| JBI  | LABEL        | BR CC1 CC0 OV OS OR STARLO /FC Jump if BR="1".                                                                                                                                                                 | 2   |
| JNBI | LABEL        | Y Jump if BR="0".                                                                                                                                                                                              | 2   |
|      |              | 0 1 - 0                                                                                                                                                                                                        |     |
| JO   | LABEL        | BR CC1 CC0 OV OS OR STARLO /FC Jump on stored overflow (OV="1").                                                                                                                                               | 1⁄2 |
|      |              | Y                                                                                                                                                                                                              |     |
|      |              |                                                                                                                                                                                                                |     |
| JOS  | LABEL        | BR CC1 CC0 OV OS OR STARLO /FC Jump on stored overflow (OS="1").                                                                                                                                               | 2   |
|      |              |                                                                                                                                                                                                                |     |
|      |              |                                                                                                                                                                                                                |     |
| JUO  | LABEL        | BR CC1 CC0 OV OS OR STARLO /FC Jump if "unordered instruction" (CC1=1 and CC0=1).                                                                                                                              | 2   |
| JZ   | LABEL        | - Y Y Jump if result=0 (CC1=0 and CC0=0).                                                                                                                                                                      | 1/2 |
| JP   | LABEL        | Jump if result>0 (CC1=1 and CC0=0).                                                                                                                                                                            | 1/2 |
| JM   | LABEL        | Jump if result<0 (CC1=0 and CC0=1).                                                                                                                                                                            | 1/2 |
| JN   | LABEL        | Jump if result≠0.                                                                                                                                                                                              | 1/2 |
|      |              | (CC1=1 and CC0=0) or (CC1=0) and (CC0=1)                                                                                                                                                                       |     |
| JMZ  | LABEL        | Jump if result≤0.                                                                                                                                                                                              | 2   |
|      |              | (CC1=0 and CC0=1) or (CC1=0 and CC0=0)                                                                                                                                                                         |     |
| JPZ  | LABEL        | Jump if result≥0.                                                                                                                                                                                              | 2   |
|      |              | (CC1=1 and CC0=0) or (CC1=0 and CC0=0)                                                                                                                                                                         |     |

| Command | Operand | Parameter | BR CC | 5<br>1 CC0 | Stat<br>ov | us<br>os | wor | d<br>st4 | RLO | /FC | Function                                             | Length<br>in<br>words |
|---------|---------|-----------|-------|------------|------------|----------|-----|----------|-----|-----|------------------------------------------------------|-----------------------|
|         |         |           |       |            |            |          |     |          |     |     | : Instruction depends on<br>: Instruction influences |                       |

| JL   | LABEL | BR | CC1 | CC0 | ov | os | OR | ST. | ARLO | , c | FC | Jump distributor                                                               | 2 |
|------|-------|----|-----|-----|----|----|----|-----|------|-----|----|--------------------------------------------------------------------------------|---|
|      |       | -  | -   | -   | -  | -  | -  | -   | -    |     | -  | This instruction is followed by a list of jump instructions.                   |   |
|      |       | -  | -   | -   | -  | -  | -  | -   | -    |     | -  | The operand is a jump label to subsequent instructions in                      |   |
|      |       |    |     |     |    |    |    |     |      |     |    | this list. ACCU1-L contains the number of the jump instruction to be executed. |   |
| LOOP | LABEL |    |     |     |    |    |    |     |      |     |    | Decrement ACCU1-L and jump if ACCU1-L _ 0                                      | 2 |
|      |       |    |     |     |    |    |    |     |      |     |    | (loop programming)                                                             |   |

# **Transfer instructions**

| Trans | fer instruc | tions     | Transfer the contents of ACCU1 into addressed operand. The status word is affected. | he<br>not |
|-------|-------------|-----------|-------------------------------------------------------------------------------------|-----------|
| Т     |             |           | Transfer the contents of ACCU1-LL to                                                |           |
|       | IB a        | 0 to 127  | input byte.                                                                         | 1/2       |
|       | QB a        | 0 to 127  | output byte.                                                                        | 1/2       |
|       | PQB a       | 0 to 1023 | periphery output byte.                                                              | 1/2       |
|       | MB a        | 0 to 1023 | bit memory byte.                                                                    | 1/2       |
|       | LB a        | 0 to 1043 | local data byte.                                                                    | 2         |
|       | DBB a       | 0 to 8191 | data byte.                                                                          | 2         |
|       | DIB a       | 0 to 8191 | instance data byte.                                                                 | 2         |
|       | g [AR1,m]   |           | register-indirect, area-internal (AR1)                                              | 2         |
|       | g [AR2,m]   |           | register-indirect, area-internal (AR2)                                              | 2         |
|       | B [AR1,m]   |           | area-crossing (AR1)                                                                 | 2         |
|       | B [AR2,m]   |           | area-crossing (AR2)                                                                 | 2         |
|       | Parameter   |           | via parameters                                                                      | 2         |
| Т     |             |           | Transfer the contents of ACCU1-L to                                                 |           |
|       | IW          | 0 to 126  | input word.                                                                         | 1/2       |
|       | QW          | 0 to 126  | output word.                                                                        | 1/2       |
|       | PQW         | 0 to 1022 | periphery output word.                                                              | 1/2       |
|       | MW          | 0 to 1022 | bit memory word.                                                                    | 1/2       |
|       | LW          | 0 to 1042 | local data word.                                                                    | 2         |
|       | DBW         | 0 to 8190 | data word.                                                                          | 2         |
|       | DIW         | 0 to 8190 | instance data word.                                                                 | 2         |
|       | h [AR1,m]   |           | register-indirect, area-internal (AR1)                                              | 2         |
|       | h [AR2,m]   |           | register-indirect, area-internal (AR2)                                              | 2         |
|       | W [AR1,m]   |           | area-crossing (AR1)                                                                 | 2         |
|       | W [AR2,m]   |           | area-crossing (AR2)                                                                 | 2         |
|       | Parameter   |           | via parameters                                                                      | 2         |

### Chapter 9 Instruction list

| Command | Operand | Parameter |    |     | s   | tat | us | woi | rd |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|-----|----|-----|----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov  | os | OR  | ST | RLC | /FC |                          | words        |
|         |         |           |    |     |     |     |    |     |    |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |     |    |     |    |     |     | : Instruction influences |              |

| Т                           |                             |                       |           | Transfer the contents of ACCU1 to                                    |     |
|-----------------------------|-----------------------------|-----------------------|-----------|----------------------------------------------------------------------|-----|
|                             | ID                          |                       | 0 to 124  | input double word.                                                   | 1/2 |
|                             | QD                          |                       | 0 to 124  | output double word.                                                  | 1/2 |
|                             | PQD                         |                       | 0 to 1020 | periphery output double word.                                        | 1/2 |
|                             | MD                          |                       | 0 to 1020 | bit memory double word.                                              | 1/2 |
|                             | LD                          |                       | 0 to 1040 | local data double word.                                              | 2   |
|                             | DBD                         |                       | 0 to 8188 | data double word.                                                    | 2   |
|                             | DID                         |                       | 0 to 8188 | instance data double word.                                           | 2   |
|                             | i [AR1                      | ,m]                   |           | register-indirect, area-internal (AR1)                               | 2   |
|                             | i [AR2                      | ,m]                   |           | register-indirect, area-internal (AR2)                               | 2   |
|                             | D [AR                       | 1,m]                  |           | area-crossing (AR1)                                                  | 2   |
|                             | D [AR                       | 2,m]                  |           | area-crossing (AR2)                                                  | 2   |
|                             | Param                       | eter                  |           | via parameters                                                       | 2   |
| Load a<br>instrue<br>addres | and tra<br>ctions<br>ss reg | ansfe<br>for<br>ister | ər<br>,   | Load a double word from a memory area or a register into AR1 or AR2. |     |
| LAR1                        |                             |                       |           | Load the contents from                                               |     |
|                             | -                           |                       |           | ACCU1.                                                               | 1   |
|                             | AR2                         |                       |           | address register 2.                                                  | 1   |
|                             | DBD                         | а                     | 0 to 8188 | data double word.                                                    | 2   |
|                             | DID                         | а                     | 0 to 8188 | instance data double word.                                           | 2   |
|                             | m                           |                       |           | 32Bit constant as pointer.                                           | 3   |
|                             | LD                          | а                     | 0 to 1040 | local data double word.                                              | 2   |
|                             | MD                          | а                     | 0 to 1020 | bit memory double word.                                              | 2   |
|                             |                             |                       |           | into AR1.                                                            |     |
| LAR2                        |                             |                       |           | Load the contents from                                               |     |
|                             | -                           |                       |           | ACCU1.                                                               | 1   |
|                             | DBD                         | а                     | 0 to 8188 | data double word.                                                    | 2   |
|                             | DID                         | а                     | 0 to 8188 | instance data double word.                                           | 2   |
|                             | m                           |                       |           | 32Bit constant as pointer.                                           | 3   |
|                             | LD                          | а                     | 0 to 1040 | local data double word.                                              | 2   |
|                             | MD                          | а                     | 0 to 1020 | bit memory double word.                                              | 2   |
|                             |                             |                       |           | into AR2.                                                            |     |
| TAR1                        |                             |                       |           | Transfer the contents from AR1 to                                    |     |
|                             | -                           |                       |           | ACCU1.                                                               | 1   |
|                             | AR2                         |                       |           | address register 2.                                                  | 1   |
|                             | DBD                         | а                     | 0 to 8188 | data double word.                                                    | 2   |
|                             | DID                         | а                     | 0 to 8188 | instance data double word.                                           | 2   |
|                             | LD                          | а                     | 0 to 1040 | local data double word.                                              | 2   |
|                             | MD                          | а                     | 0 to 1020 | bit memory double word.                                              | 2   |

### Chapter 9 Instruction list

#### CPU ADAM 821x

| Command | Operand | Parameter |    |     | s   | tatı | us | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov   | os | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |     |      |    |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |    |     |     |     |     | : Instruction influences |              |

|                             |                                   | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |          |
|-----------------------------|-----------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| TAR2                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Transfer the contents from AR2 to                                                                                                         |          |
|                             | -                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACCU1.                                                                                                                                    | 1        |
|                             | DBD a                             | 0 to 8188             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | data double word.                                                                                                                         | 2        |
|                             | DID a                             | 0 to 8188             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | instance data double word.                                                                                                                | 2        |
|                             | LD a                              | 0 to 1040             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | local data double word.                                                                                                                   | 2        |
|                             | MD a                              | 0 to 1020             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bit memory double word.                                                                                                                   | 2        |
| TAR                         |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exchange the contents of AR1 and AR2                                                                                                      | 1        |
| Load a<br>instruc<br>status | and transfe<br>ctions for<br>word | er<br>the             | Status word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Load status word from a memory or a register of AR1 or AR2.                                                                               |          |
| L                           | STW<br>-                          |                       | BR         CC1         CC0         OV         OS         OR         STA         RLO         /FC           Y         Y         Y         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O         Y         O         O | Load status word in ACCU1.                                                                                                                |          |
| Т                           | STW<br>-                          |                       | BR         CC1         CC0         OV         OS         OR         STA         RLO         /FC           -         -         -         -         -         -         -         -         -           Y         Y         Y         Y         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         -         -         Y         | Transfer ACCU1 (Bits 0 to 8) into status word.                                                                                            |          |
| Load i<br>numbe             | nstruction<br>er and DB           | is for DB<br>length   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Load the number/length of a data block to ACCU1. The old contents of ACCU1 are saved into ACCU2. The condition code bits are not affected |          |
| L                           | DBNO                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Load number of data block.                                                                                                                | 1        |
| L                           | DINO                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Load number of instance data block.                                                                                                       | 1        |
| L                           | DBLG                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Load length of data block into byte.                                                                                                      | 1        |
| L                           | DILG                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Load length of instance data block into byte.                                                                                             | 1        |
| ACCU<br>increm              | transfer in<br>nent, decre        | nstructions,<br>ement |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The status word is not affected.                                                                                                          | <b>–</b> |
| CAW                         | -                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reverse the order of the bytes in ACCU1-L.                                                                                                | 1        |
|                             |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LL, LH becomes LH, LL.                                                                                                                    |          |
| CAD                         | -                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reverse the order of the bytes in ACCU1.                                                                                                  | 1        |
|                             |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LL, LH, HL, HH becomes HH, HL, LH, LL.                                                                                                    |          |
| TAK                         | -                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Swap the contents of ACCU1 and ACCU2                                                                                                      | 1        |
| PUSH                        | -                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The contents of ACCU1 are transferred to ACCU2.                                                                                           | 1        |
| POP                         | -                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The contents of ACCU2 are transferred to ACCU1.                                                                                           | 1        |
| INC                         | 0 255                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Increment ACCU1-LL.                                                                                                                       | 1        |
| DEC                         | 0 255                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Decrement ACCU1-LL.                                                                                                                       | 1        |
| Command | Operand | Parameter |    |     | S   | tat | us | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|-----|----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov  | os | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |     |     |    |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |     |    |     |     |     |     | : Instruction influences |              |

# Data type conversion instructions

| Data ty<br>conve | ype<br>rsion instr | ructions |    |     | St  | atu | IS I | wo | rd  |     |     | The results of the conversion are in ACCU1.<br>When converting real numbers, the execution<br>time depends on the value. |   |
|------------------|--------------------|----------|----|-----|-----|-----|------|----|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------|---|
| BTI              | -                  |          | BR | CC1 | 000 | ov  | os   | OR | STA | RLO | /FC | Convert contents of ACCU1 from BCD to integer (16Bit)                                                                    | 1 |
|                  |                    |          | -  | -   | -   | -   | -    | 1  | -   | -   | -   | (BCD To Int.).                                                                                                           |   |
| BTD              | -                  |          | -  | -   | -   | -   | -    | -  | -   | -   | -   | Convert contents of ACCU1 from BCD to integer (32Bit).                                                                   | 1 |
|                  |                    |          |    |     |     |     |      |    |     |     |     | (BCD To Doubleint.).                                                                                                     |   |
| DTR              | -                  |          |    |     |     |     |      |    |     |     |     | Convert cont. of ACCU1 from integer (32Bit) to Real number                                                               | 1 |
|                  |                    |          |    |     |     |     |      |    |     |     |     | (32Bit) (Doubleint. To Real).                                                                                            |   |
| ITD              | -                  |          |    |     |     |     |      |    |     |     |     | Convert contents of ACCU1 from integer (16Bit) to integer                                                                | 1 |
|                  |                    |          |    |     |     |     |      |    |     |     |     | (32Bit) (Int. To Doubleint.).                                                                                            |   |
| ITB              | -                  |          | BR | CC1 | C0  | ov  | os   | OR | STA | RLO | /FC | Convert contents of ACCU1 from integer (16Bit) to BCD                                                                    | 1 |
|                  |                    |          | -  | -   | -   | -   | -    | 1  | -   | -   | -   | 0 to +/-999 (Int. <b>T</b> o <b>B</b> CD).                                                                               |   |
| DTB              | -                  |          | -  | -   | -   | Υ   | Υ    | 1  | -   | -   | -   | Convert contents of ACCU1 from integer (32Bit) to BCD                                                                    | 1 |
|                  |                    |          |    |     |     |     |      |    |     |     |     | 0 to +/-9 999 999 ( <b>D</b> oubleint. <b>T</b> o <b>B</b> CD).                                                          |   |
| RND              | -                  |          | BR | CC1 | CC0 | ov  | os   | OR | STA | RLO | /FC | Convert a real number to 32Bit integer.                                                                                  | 1 |
| RND-             | -                  |          | -  | -   | -   | -   | -    | -  | -   | -   | -   | Convert a real number to 32Bit integer.                                                                                  | 1 |
|                  |                    |          | -  | -   | -   | Υ   | Y    | -  | -   | -   | -   | The number is rounded next hole number                                                                                   |   |
| RND+             | -                  |          |    |     |     |     |      |    |     |     |     | Convert real number to 32Bit integer.                                                                                    | 1 |
|                  |                    |          |    |     |     |     |      |    |     |     |     | It is rounded up to the next integer.                                                                                    |   |
| TRUNC            | -                  |          |    |     |     |     |      |    |     |     |     | Convert real number to 32Bit integer.                                                                                    | 1 |
|                  |                    |          |    |     |     |     |      |    |     |     |     | The places after the decimal point are truncated.                                                                        |   |
| Comp             | lement cre         | ation    |    |     | St  | atu | IS I | wo | rd  |     |     |                                                                                                                          |   |
| INVI             | -                  |          | BR | CC1 | CC0 | ov  | os   | OR | STA | RLO | /FC | Forms the ones complement of ACCU1-L (integer).                                                                          | 1 |
| INVD             | -                  |          | -  | -   | -   | -   | -    | -  | -   | -   | -   | Forms the ones complement of ACCU1.                                                                                      | 1 |
|                  |                    |          | -  | -   | -   | -   | -    | -  | -   | -   | -   |                                                                                                                          |   |
| NEGI             | -                  |          | BR | CC1 | 000 | ov  | os   | OR | STA | RLO | /FC | Forms the twos complement of ACCU1-L.                                                                                    | 1 |
| NEGD             | -                  |          | -  | -   | -   | -   | -    | -  | -   | -   | -   | Forms the twos complement of ACCU1 (double integer).                                                                     | 1 |
|                  |                    |          | -  | Y   | Y   | Y   | Y    | -  | -   | -   | -   |                                                                                                                          |   |

| Command | Onerend | Deremeter |    |     |          | +-+ |    |     | 4   |     |     | Function                 | Length |
|---------|---------|-----------|----|-----|----------|-----|----|-----|-----|-----|-----|--------------------------|--------|
| Commanu | Operand | Parameter |    |     | <u> </u> | เลแ | us | woi | u   |     |     | Function                 | IU     |
|         |         |           | BR | CC1 | CC0      | ov  | os | OR  | STA | RLO | /FC |                          | words  |
|         |         |           |    |     |          |     |    |     |     |     |     | : Instruction depends on |        |
|         |         |           |    |     |          |     |    |     |     |     |     | : Instruction influences |        |

# **Comparison instructions**

| Comparison instructions with integer (16Bit)                                                       | Status word                    | Comparing the integer (16Bit) in ACCU1-L and ACCU2-L. RLO=1, if condition is satisfied.                                                                                    |   |
|----------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ==  -                                                                                              | BR CC1 CC0 OV OS OR STARLO /FC | ACCU2-L=ACCU1-L                                                                                                                                                            | 1 |
| <>∣ -                                                                                              |                                | ACCU2-L≠ACCU1-L                                                                                                                                                            | 1 |
| <i -<="" th=""><th>- Y Y 0 - 0 Y Y 1</th><th>ACCU2-L<accu1-l< th=""><th>1</th></accu1-l<></th></i> | - Y Y 0 - 0 Y Y 1              | ACCU2-L <accu1-l< th=""><th>1</th></accu1-l<>                                                                                                                              | 1 |
| <=  -                                                                                              |                                | ACCU2-L<=ACCU1-L                                                                                                                                                           | 1 |
| >  -                                                                                               |                                | ACCU2-L>ACCU1-L                                                                                                                                                            | 1 |
| >=  -                                                                                              |                                | ACCU2-L>=ACCU1-L                                                                                                                                                           | 1 |
| Comparison instructions with integer (32Bit)                                                       | Status word                    | Comparing the integer (32Bit) in ACCU1 and ACCU2. RLO=1, if condition is satisfied.                                                                                        |   |
| ==D -                                                                                              | BR CC1 CC0 OV OS OR STARLO /FC | ACCU2=ACCU1                                                                                                                                                                | 1 |
| <>D -                                                                                              |                                | ACCU2≠ACCU1                                                                                                                                                                | 1 |
| <d -<="" th=""><th>- Y Y 0 - 0 Y Y 1</th><th>ACCU2<accu1< th=""><th>1</th></accu1<></th></d>       | - Y Y 0 - 0 Y Y 1              | ACCU2 <accu1< th=""><th>1</th></accu1<>                                                                                                                                    | 1 |
| <=D -                                                                                              |                                | ACCU2<=ACCU1                                                                                                                                                               | 1 |
| >D -                                                                                               |                                | ACCU2>ACCU1                                                                                                                                                                | 1 |
| >=D -                                                                                              |                                | ACCU2>=ACCU1                                                                                                                                                               | 1 |
| Comparison instructions with 32Bit real number                                                     | Status word                    | Comparing the 32Bit real numbers in ACCU1<br>and ACCU2. RLO=1, is condition is satisfied.<br>The execution time of the instruction depends<br>on the value to be compared. |   |
| ==R -                                                                                              | BR CC1 CC0 OV OS OR STARLO /FC | ACCU2=ACCU1                                                                                                                                                                | 1 |
| <>R -                                                                                              |                                | ACCU2≠ACCU1                                                                                                                                                                | 1 |
| <r -<="" th=""><th>- Y Y Y Y 0 Y Y 1</th><th>ACCU2<accu1< th=""><th>1</th></accu1<></th></r>       | - Y Y Y Y 0 Y Y 1              | ACCU2 <accu1< th=""><th>1</th></accu1<>                                                                                                                                    | 1 |
| <=R -                                                                                              |                                | ACCU2<=ACCU1                                                                                                                                                               | 1 |
| >R -                                                                                               |                                | ACCU2>ACCU1                                                                                                                                                                | 1 |
| >=R -                                                                                              |                                | ACCU2>=ACCU1                                                                                                                                                               | 1 |

## Chapter 9 Instruction list

| Command | Operand | Parameter |    |       | Sta  | atus | s v | vor | d   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-------|------|------|-----|-----|-----|-----|-----|--------------------------|--------------|
|         | •       |           | BR | CC1 C | C0 O | V C  | )S  | OR  | STA | RLC | /FC |                          | words        |
|         |         |           |    |       |      |      |     |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |       |      |      |     |     |     |     |     | : Instruction influences |              |

# **Bit logic instructions (Bit)**

| Bit log<br>bit op | gic instruc<br>erands | tions with | Status word                    | Examining the signal state of the addressed instruction and gating the result with the RLO according to the appropriate logic function. |     |
|-------------------|-----------------------|------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| А                 |                       |            | BR CC1CC0 OV OS OR STARLO /FC  | AND operation at signal state "1"                                                                                                       |     |
|                   | I/Q a.b               | 0.0 127.7  | Y - Y Y                        | Input/output                                                                                                                            | 1/2 |
|                   | M a.b                 | 0.0 1023.7 | Y Y Y 1                        | Bit memory                                                                                                                              | 1/2 |
|                   | L a.b                 | 0.0 1043.7 |                                | Local data bit                                                                                                                          | 2   |
|                   | DBX a.b               | 0.0 8191.7 |                                | Data bit                                                                                                                                | 2   |
|                   | DIX a.b               | 0.0 8191.7 |                                | Instance data bit                                                                                                                       | 2   |
|                   | c [AR1,m]             |            |                                | register-indirect, area-internal (AR1)                                                                                                  | 2   |
|                   | c [AR2,m]             |            |                                | register-indirect, area-internal (AR2)                                                                                                  | 2   |
|                   | [AR1,m]               |            |                                | area-crossing (AR1)                                                                                                                     | 2   |
|                   | [AR2,m]               |            |                                | area-crossing (AR2)                                                                                                                     | 2   |
|                   | Parameter             |            |                                | via parameters                                                                                                                          | 2   |
| AN                |                       |            | BR CC1 CC0 OV OS OR STARLO /FC | AND operation of signal state "0"                                                                                                       |     |
|                   | I/Q a.b               | 0.0 127.7  | Y - Y Y                        | Input/output                                                                                                                            | 1/2 |
|                   | M a.b                 | 0.0 1023.7 | Y Y Y 1                        | Bit memory                                                                                                                              | 1/2 |
|                   | L a.b                 | 0.0 1043.7 |                                | Local data bit                                                                                                                          | 2   |
|                   | DBX a.b               | 0.0 8191.7 |                                | Data bit                                                                                                                                | 2   |
|                   | DIX a.b               | 0.0 8191.7 |                                | Instance data bit                                                                                                                       | 2   |
|                   | c [AR1,m]             |            |                                | register-indirect, area-internal (AR1)                                                                                                  | 2   |
|                   | c [AR2,m]             |            |                                | register-indirect, area-internal (AR2)                                                                                                  | 2   |
|                   | [AR1,m]               |            |                                | area-crossing (AR1)                                                                                                                     | 2   |
|                   | [AR2,m]               |            |                                | area-crossing (AR2)                                                                                                                     | 2   |
|                   | Parameter             |            |                                | via parameters                                                                                                                          | 2   |
| 0                 |                       |            | BR CC1 CC0 OV OS OR STARLO /FC | OR operation at signal state "1"                                                                                                        |     |
|                   | I/Q a.b               | 0.0 127.7  | Y Y                            | Input/output                                                                                                                            | 1/2 |
|                   | M a.b                 | 0.0 1023.7 | 0 Y Y 1                        | Bit memory                                                                                                                              | 1/2 |
|                   | L a.b                 | 0.0 1043.7 |                                | Local data bit                                                                                                                          | 2   |
|                   | DBX a.b               | 0.0 8191.7 |                                | Data bit                                                                                                                                | 2   |
|                   | DIX a.b               | 0.0 8191.7 |                                | Instance data bit                                                                                                                       | 2   |
|                   | c [AR1,m]             |            |                                | register-indirect, area-internal (AR1)                                                                                                  | 2   |
|                   | c [AR2,m]             |            |                                | register-indirect, area-internal (AR2)                                                                                                  | 2   |
|                   | [AR1,m]               |            |                                | area-crossing (AR1)                                                                                                                     | 2   |
|                   | [AR2,m]               |            |                                | area-crossing (AR2)                                                                                                                     | 2   |
|                   | Parameter             |            |                                | via parameters                                                                                                                          | 2   |

| Command | Operand | Parameter |    |     | S   | Stat | us | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov   | os | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |     |      |    |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |    |     |     |     |     | : Instruction influences |              |

| -  |           |            |                                |                                            |     |
|----|-----------|------------|--------------------------------|--------------------------------------------|-----|
| ON |           |            | BR CC1 CC0 OV OS OR STARLO /FC | OR operation at signal state "0"           |     |
|    | I/Q a.b   | 0.0 127.7  | Y Y                            | Input/output                               | 1/2 |
|    | M a.b     | 0.0 1023.7 | 0 Y Y 1                        | Bit memory                                 | 1/2 |
|    | L a.b     | 0.0 1043.7 |                                | Local data bit                             | 2   |
|    | DBX a.b   | 0.0 8191.7 |                                | Data bit                                   | 2   |
|    | DIX a.b   | 0.0 8191.7 |                                | Instance data bit                          | 2   |
|    | c [AR1,m] |            |                                | register-indirect, area-internal (AR1)     | 2   |
|    | c [AR2,m] |            |                                | register-indirect, area-internal (AR2)     | 2   |
|    | [AR1,m]   |            |                                | area-crossing (AR1)                        | 2   |
|    | [AR2,m]   |            |                                | area-crossing (AR2)                        | 2   |
|    | Parameter |            |                                | via parameters                             | 2   |
| х  |           |            | BR CC1 CC0 OV OS OR STARLO /FC | EXCLUSIVE-OR operation at signal state "1" |     |
|    | I/Q a.b   | 0.0 127.7  | Y Y                            | Input/output                               | 2   |
|    | M a.b     | 0.0 1023.7 | 0 Y Y 1                        | Bit memory                                 | 2   |
|    | L a.b     | 0.0 1043.7 |                                | Local data bit                             | 2   |
|    | DBX a.b   | 0.0 8191.7 |                                | data bit                                   | 2   |
|    | DIX a.b   | 0.0 8191.7 |                                | Instance data bit                          | 2   |
|    | c [AR1,m] |            |                                | register-indirect, area-internal (AR1)     | 2   |
|    | c [AR2,m] |            |                                | register-indirect, area-internal (AR2)     | 2   |
|    | [AR1,m]   |            |                                | area-crossing (AR1)                        | 2   |
|    | [AR2,m]   |            |                                | area-crossing (AR2)                        | 2   |
|    | Parameter |            |                                | via parameters                             | 2   |
| XN |           |            | BR CC1 CC0 OV OS OR STARLO /FC | EXCLUSIVE-OR operation at signal state "0" |     |
|    | I/Q a.b   | 0.0 127.7  | Y Y                            | Input/output                               | 2   |
|    | M a.b     | 0.0 1023.7 | 0 Y Y 1                        | Bit memory                                 | 2   |
|    | L a.b     | 0.0 1043.7 |                                | Local data bit                             | 2   |
|    | DBX a.b   | 0.0 8191.7 |                                | Data bit                                   | 2   |
|    | DIX a.b   | 0.0 8191.7 |                                | Instance data bit                          | 2   |
|    | c [AR1,m] |            |                                | register-indirect, area-internal (AR1)     | 2   |
|    | c [AR2,m] |            |                                | register-indirect, area-internal (AR2)     | 2   |
|    | [AR1,m]   |            |                                | area-crossing (AR1)                        | 2   |
|    | [AR2,m]   |            |                                | area-crossing (AR2)                        | 2   |
|    | Parameter |            |                                | via parameters                             | 2   |

## Chapter 9 Instruction list

| Command | Operand | Parameter |    |       | Sta   | tus  | woi | rd |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-------|-------|------|-----|----|-----|-----|--------------------------|--------------|
|         | -       |           | BR | CC1 C | C0 OV | ' OS | OR  | ST | RLO | /FC |                          | words        |
|         |         |           |    |       |       |      |     |    |     |     | : Instruction depends on |              |
|         |         |           |    |       |       |      |     |    |     |     | : Instruction influences |              |

| Bit log<br>parent | jic instruct<br>hetical exp | ions with<br>pressions |    |             | S    | tat | us | wo | oro | d   |      |    | Saving the bits BR, RLO, OR and a function ID (A, AN,) at the nesting stack.  |   |
|-------------------|-----------------------------|------------------------|----|-------------|------|-----|----|----|-----|-----|------|----|-------------------------------------------------------------------------------|---|
|                   |                             |                        |    | _           |      |     |    |    | -   |     |      |    | For each block 7 nesting levels are possible.                                 |   |
| A(                |                             |                        | BR | CC1         | 1 CC | ov  | os | OR | st. | ARL | o /I | FC | AND left parenthesis                                                          | 1 |
| AN(               |                             |                        | Y  | -           | -    | -   | -  | Y  | -   | . Y | , ,  | Y  | AND-NOT left parenthesis                                                      | 1 |
| О(                |                             |                        | -  | -           | -    | -   | -  | 0  | 1   | -   |      | 0  | OR left parenthesis                                                           | 1 |
| ON(               |                             |                        |    |             |      |     |    |    |     |     |      |    | OR-NOT left parenthesis                                                       | 1 |
| X(                |                             |                        |    |             |      |     |    |    |     |     |      |    | EXCLUSIVE-OR left parenthesis                                                 | 1 |
| XN(               |                             |                        |    |             |      |     |    |    |     |     |      |    | EXCLUSIVE-OR-NOT left parenthesis                                             | 1 |
| )                 |                             |                        | BR | CC1         |      | ov  | os | OR | st. | ARL | o /I | FC | Right parenthesis, popping an entry off the nesting stack,                    | 1 |
|                   |                             |                        | -  | -           | -    | -   | -  | -  | -   | Y   |      | -  | gating RLO with the current RLO in the processor.                             |   |
|                   |                             |                        | Y  | -           | -    | -   | -  | Y  | 1   | Y   | ,    | 1  |                                                                               |   |
| ORing             | of AND op                   | perations              |    | Status word |      |     |    |    |     |     |      |    | The ORing of AND operations is implemented according the rule: AND before OR. |   |
| 0                 |                             |                        | BR | CC1         |      | ov  | os | OR | ST  | ARL | o /I | FC | OR operations of AND functions according the rule:                            | 1 |
|                   |                             |                        | -  | -           | -    | -   | -  | Y  | -   | Y   |      | Y  | AND before OR                                                                 |   |
|                   |                             |                        | -  | -           | -    | -   | -  | Y  | 1   | -   | ,    | Y  |                                                                               |   |

| Command | Operand | Parameter |    |     | s   | tatı | usv | wor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|-----|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov   | os  | OR  | STA | RLO | /FC |                          | words        |
|         |         | ļ         |    |     |     |      |     |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |     |     |     |     |     | : Instruction influences |              |

| Logic<br>timer a | instruction<br>and counte    | ns with<br>ers | Status word                    | Examining the signal state of the addressed timer/counter an gating the result with the RLO according to the appropriate logic function. |     |
|------------------|------------------------------|----------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| А                |                              |                | BR CC1 CC0 OV OS OR STARLO /FC | AND operation at signal state                                                                                                            |     |
|                  | Τf                           | 0 to 127       | Y - Y Y                        | Timer                                                                                                                                    | 1/2 |
|                  | C f                          | 0 to 255       | Y Y 1                          | Counter                                                                                                                                  | 1/2 |
|                  | Timer<br>para.<br>Counter p. |                |                                | Timer addressed via parameters                                                                                                           | 2   |
| AN               | p.                           |                |                                | AND operation at signal state                                                                                                            |     |
| /                | Τf                           | 0 to 127       | BR CC1CC0 OV OS OR STARLO /FC  |                                                                                                                                          | 1/2 |
|                  | C f                          | 0 to 255       |                                | Counter                                                                                                                                  | 1/2 |
|                  | Timer                        | 0 10 200       |                                |                                                                                                                                          | 2   |
|                  | para.                        |                |                                |                                                                                                                                          | 2   |
|                  | Counter p.                   |                |                                | Counter addressed via parameters                                                                                                         |     |
| 0                |                              |                | BR CC1 CC0 OV OS OR STARLO /FC | OR operation at signal state                                                                                                             |     |
|                  | Τf                           | 0 to 127       | Y Y                            | Timer                                                                                                                                    | 1/2 |
|                  | Cf                           | 0 to 255       | 0 Y Y 1                        | Counter                                                                                                                                  | 1/2 |
|                  | Timer                        |                |                                | Timer addressed via parameters                                                                                                           | 2   |
|                  | para.<br>Counter p.          |                |                                | Counter addressed via parameters                                                                                                         |     |
| ON               |                              |                |                                | OR operation at signal state                                                                                                             |     |
|                  | Τf                           | 0 to 127       | Y Y                            | Timer                                                                                                                                    | 1/2 |
|                  | Cf                           | 0 to 255       | 0 Y Y 1                        | Counter                                                                                                                                  | 1/2 |
|                  | Timer<br>para.               |                |                                | Timer addressed via parameters                                                                                                           | 2   |
|                  | Counter p.                   |                |                                | Counter addressed via parameters                                                                                                         |     |
| х                |                              |                | BR CC1 CC0 OV OS OR STARLO /FC | EXCLUSIVE-OR operation at signal state                                                                                                   |     |
|                  | Τf                           | 0 to 127       | Y Y                            | Timer                                                                                                                                    | 2   |
|                  | Cf                           | 0 to 255       | 0 Y Y 1                        | Counter                                                                                                                                  | 2   |
|                  | Timer<br>para.               |                |                                | Timer addressed via parameters                                                                                                           | 2   |
|                  | Counter p.                   |                |                                | Counter addressed via parameters                                                                                                         |     |
| XN               |                              |                | BR CC1 CC0 OV OS OR STARLO /FC | EXCLUSIVE-OR operation at signal state                                                                                                   |     |
|                  | Τf                           | 0 to 127       | Y Y                            | Timer                                                                                                                                    | 2   |
|                  | Cf                           | 0 to 255       | 0 Y Y 1                        | Counter                                                                                                                                  | 2   |
|                  | Timer                        |                |                                | Timer addressed via parameters                                                                                                           | 2   |
|                  | Counter p.                   |                |                                | Counter addressed via parameters                                                                                                         |     |

#### Chapter 9 Instruction list

| Command | Operand | Parameter |    |       | Sta  | atu  | IS V | vor | d   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-------|------|------|------|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 C | C0 C | ov ( | os   | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |       |      |      |      |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |       |      |      |      |     |     |     |     | : Instruction influences |              |

| Evalua<br>Using<br>EXCLL | ting Conditions<br>AND, OR and<br>JSIVE OR | Status word                   | Examining the specified conditions for their signal status, and gating the result with the RLO according to the appropriate function. |   |
|--------------------------|--------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---|
| А                        |                                            | BR CC1 CC0 OV OS OR STARLO /F | c AND operation at signal state "1"                                                                                                   |   |
|                          | ==0                                        | YYYYYY Y - Y                  | Result=0 (CC1=0) and (CC0=0)                                                                                                          | 1 |
|                          | >0                                         | Y Y 1                         | Result>0 (CC1=1) and (CC0=0)                                                                                                          | 1 |
|                          | <0                                         |                               | Result<0 (CC1=0) and (CC0=1)                                                                                                          | 1 |
|                          | <>0                                        |                               | Result≠0 ((CC1=0) and (CC0=1)) or ((CC1=1) and (CC0=0))                                                                               | 1 |
|                          | <=0                                        |                               | Result<=0 ((CC1=0) and (CC0=1)) or ((CC1=0) and (CC0=0))                                                                              | 1 |
|                          | >=0                                        |                               | Result>=0 ((CC1=1) and (CC0=0)) or ((CC1=1) and (CC0=0))                                                                              | 1 |
|                          | UO                                         |                               | unordered math instruction (CC1=1) and (CC0=1)                                                                                        | 1 |
|                          | OS                                         |                               | OS=1                                                                                                                                  | 1 |
|                          | BR                                         |                               | BR=1                                                                                                                                  | 1 |
|                          | OV                                         |                               | OV=1                                                                                                                                  | 1 |
| AN                       |                                            | BR CC1 CC0 OV OS OR STARLO /F | <sub>c</sub> AND operation at signal state "0"                                                                                        |   |
|                          | ==0                                        | YYYYYY Y - Y                  | Result=0 (CC1=0) and (CC0=0)                                                                                                          | 1 |
|                          | >0                                         | Y Y 1                         | Result>0 (CC1=1) and (CC0=0)                                                                                                          | 1 |
|                          | <0                                         |                               | Result<0 (CC1=0) and (CC0=1)                                                                                                          | 1 |
|                          | <>0                                        |                               | Result≠0 ((CC1=0) and (CC0=1)) or ((CC1=1) and (CC0=0))                                                                               | 1 |
|                          | <=0                                        |                               | Result<=0 ((CC1=0) and (CC0=1)) or ((CC1=0) and (CC0=0))                                                                              | 1 |
|                          | >=0                                        |                               | Result>=0 ((CC1=1) and (CC0=0)) or ((CC1=1) and (CC0=0))                                                                              | 1 |
|                          | UO                                         |                               | unordered math instruction (CC1=1) and (CC0=1)                                                                                        | 1 |
|                          | OS                                         |                               | OS=0                                                                                                                                  | 1 |
|                          | BR                                         |                               | BR=0                                                                                                                                  | 1 |
|                          | OV                                         |                               | OV=0                                                                                                                                  | 1 |
| 0                        |                                            | BR CC1 CC0 OV OS OR STARLO /F | $_{ m c}$ OR operation at signal state "1"                                                                                            |   |
|                          | ==0                                        | Y Y Y Y Y Y Y                 | <pre>/ Result=0 (CC1=0) and (CC0=0)</pre>                                                                                             | 1 |
|                          | >0                                         | 0 Y Y 1                       | Result>0 (CC1=1) and (CC0=0)                                                                                                          | 1 |
|                          | <0                                         |                               | Result<0 (CC1=0) and (CC0=1)                                                                                                          | 1 |
|                          | <>0                                        |                               | Result≠0 ((CC1=0) and (CC0=1)) or ((CC1=1) and (CC0=0))                                                                               | 1 |
|                          | <=0                                        |                               | Result<=0 ((CC1=0) and (CC0=1)) or ((CC1=0) and (CC0=0))                                                                              | 1 |
|                          | >=0                                        |                               | Result>=0 ((CC1=1) and (CC0=0)) or ((CC1=1) and (CC0=0))                                                                              | 1 |
|                          | UO                                         |                               | unordered math instruction (CC1=1) and (CC0=1)                                                                                        | 1 |
|                          | OS                                         |                               | OS=1                                                                                                                                  | 1 |
|                          | BR                                         |                               | BR=1                                                                                                                                  | 1 |
|                          | OV                                         |                               | OV=1                                                                                                                                  | 1 |

| Command | Operand | Parameter |    |     | St    | atu | is v | vor | d   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-------|-----|------|-----|-----|-----|-----|--------------------------|--------------|
|         | -       |           | BR | CC1 | CC0 ( | VC  | os   | OR  | STA | RLO | /FC |                          | words        |
|         |         |           |    |     |       |     |      |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |       |     |      |     |     |     |     | : Instruction influences |              |

| ON |     | BR | CC1 |     | ov | os | 6 OF | R S | TAR | LO / | /FC | OR operation at signal state "0"                         |   |
|----|-----|----|-----|-----|----|----|------|-----|-----|------|-----|----------------------------------------------------------|---|
|    | ==0 | Υ  | Y   | Υ   | Y  | Y  | -    |     | - ` | Y    | Y   | Result=0 (CC1=0) and (CC0=0)                             | 1 |
|    | >0  | -  | -   | -   | -  | -  | 0    | ) ' | Y   | Y    | 1   | Result>0 (CC1=1) and (CC0=0)                             | 1 |
|    | <0  |    |     |     |    |    |      |     |     |      |     | Result<0 (CC1=0) and (CC0=1)                             | 1 |
|    | <>0 |    |     |     |    |    |      |     |     |      |     | Result≠0 ((CC1=0) and (CC0=1)) or ((CC1=1) and (CC0=0))  | 1 |
|    | <=0 |    |     |     |    |    |      |     |     |      |     | Result<=0 ((CC1=0) and (CC0=1)) or ((CC1=0) and (CC0=0)) | 1 |
|    | >=0 |    |     |     |    |    |      |     |     |      |     | Result>=0 ((CC1=1) and (CC0=0)) or ((CC1=1) and (CC0=0)) | 1 |
|    | UO  |    |     |     |    |    |      |     |     |      |     | unordered math instruction (CC1=1) and (CC0=1)           | 1 |
|    | os  |    |     |     |    |    |      |     |     |      |     | OS=0                                                     | 1 |
|    | BR  |    |     |     |    |    |      |     |     |      |     | BR=0                                                     | 1 |
|    | ov  |    |     |     |    |    |      |     |     |      |     | OV=0                                                     | 1 |
| х  |     | BR | CC1 |     | ov | os | 6 OF | R S | TAR | LO / | /FC | EXCLUSIVE-OR operation at signal state "1"               | _ |
|    | ==0 | Υ  | Y   | Y   | Y  | Y  | -    |     | - ` | Y    | Y   | Result=0 (CC1=0) and (CC0=0)                             | 1 |
|    | >0  | -  | -   | -   | -  | -  | 0    | )   | Y   | Y    | 1   | Result>0 (CC1=1) and (CC0=0)                             | 1 |
|    | <0  |    |     |     |    |    |      |     |     |      |     | Result<0 (CC1=0) and (CC0=1)                             | 1 |
|    | <>0 |    |     |     |    |    |      |     |     |      |     | Result≠0 ((CC1=0) and (CC0=1)) or ((CC1=1) and (CC0=0))  | 1 |
|    | <=0 |    |     |     |    |    |      |     |     |      |     | Result<=0 ((CC1=0) and (CC0=1)) or ((CC1=0) and (CC0=0)) | 1 |
|    | >=0 |    |     |     |    |    |      |     |     |      |     | Result>=0 ((CC1=1) and (CC0=0)) or ((CC1=1) and (CC0=0)) | 1 |
|    | UO  |    |     |     |    |    |      |     |     |      |     | unordered math instruction (CC1=1) and (CC0=1)           | 1 |
|    | os  |    |     |     |    |    |      |     |     |      |     | OS=1                                                     | 1 |
|    | BR  |    |     |     |    |    |      |     |     |      |     | BR=1                                                     | 1 |
|    | ov  |    |     |     |    |    |      |     |     |      |     | OV=1                                                     | 1 |
| XN |     | BR | CC1 | cco | ov | os | 6 OF | R S | TAR | LO / | /FC | EXCLUSIVE-OR operation at signal state "0"               |   |
|    | ==0 | Υ  | Y   | Υ   | Υ  | Y  | -    |     | - ` | Y    | Y   | Result=0 (CC1=0) and (CC0=0)                             | 1 |
|    | >0  | -  | -   | -   | -  | -  | 0    | ) ` | Y   | Y    | 1   | Result>0 (CC1=1) and (CC0=0)                             | 1 |
|    | <0  |    |     |     |    |    |      |     | •   |      |     | Result<0 (CC1=0) and (CC0=1)                             | 1 |
|    | <>0 |    |     |     |    |    |      |     |     |      |     | Result≠0 ((CC1=0) and (CC0=1)) or ((CC1=1) and (CC0=0))  | 1 |
|    | <=0 |    |     |     |    |    |      |     |     |      |     | Result<=0 ((CC1=0) and (CC0=1)) or ((CC1=0) and (CC0=0)) | 1 |
|    | >=0 |    |     |     |    |    |      |     |     |      |     | Result>=0 ((CC1=1) and (CC0=0)) or ((CC1=1) and (CC0=0)) | 1 |
|    | UO  |    |     |     |    |    |      |     |     |      |     | unordered math instruction (CC1=1) and (CC0=1)           | 1 |
|    | os  |    |     |     |    |    |      |     |     |      |     | OS=0                                                     | 1 |
|    | BR  |    |     |     |    |    |      |     |     |      |     | BR=0                                                     | 1 |
|    | ov  |    |     |     |    |    |      |     |     |      |     | OV=0                                                     | 1 |

| Command | Operand | Parameter |    | _   | S   | tati | ıs ۱ | vor | ď   |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|------|-----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ov   | OS   | OR  | STA | RLC | /FC |                          | words        |
|         |         |           |    |     |     |      |      |     |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |      |     |     |     |     | : Instruction influences |              |

# Word logic instructions with the contents of ACCU1

| Word<br>with th<br>ACCU | Logic Inst<br>ne Content<br>1 | ogic Instructions Status word<br>Contents of |    |     |     |    |    |    | oro | d      |     | Gating the contents of ACCU1 and/or ACCU1-<br>L with a word or double word according to the<br>appropriate function. |   |
|-------------------------|-------------------------------|----------------------------------------------|----|-----|-----|----|----|----|-----|--------|-----|----------------------------------------------------------------------------------------------------------------------|---|
|                         |                               |                                              |    |     |     |    |    |    |     |        |     | The word or double word is either a constant in the instruction or in ACCU2. The result is in ACCU1 and/or ACCU1-L.  |   |
| AW                      |                               |                                              | BR | CC1 | CC0 | ov | os | OR | ST  | ra RL( | )/F | c AND ACCU2-L                                                                                                        | 1 |
| AW                      | k16                           |                                              | -  | -   | -   | -  | -  | -  | -   |        | -   | AND 16Bit constant                                                                                                   | 2 |
| OW                      |                               |                                              | -  | Υ   | 0   | 0  | -  | -  | -   |        | -   | OR ACCU2-L                                                                                                           | 1 |
| OW                      | k16                           |                                              |    |     |     |    |    |    |     | •      |     | OR 16Bit constant                                                                                                    | 2 |
| XOW                     |                               |                                              |    |     |     |    |    |    |     |        |     | EXCLUSIVE OR ACCU2-L                                                                                                 | 1 |
| XOW                     | k16                           |                                              |    |     |     |    |    |    |     |        |     | EXCLUSIVE OR 16Bit constant                                                                                          | 2 |
| AD                      |                               |                                              |    |     |     |    |    |    |     |        |     | AND ACCU2                                                                                                            | 1 |
| AD                      | k32                           |                                              |    |     |     |    |    |    |     |        |     | AND 32Bit constant                                                                                                   | 3 |
| OD                      |                               |                                              |    |     |     |    |    |    |     |        |     | OR ACCU2                                                                                                             | 1 |
| OD                      | k32                           |                                              |    |     |     |    |    |    |     |        |     | OR 32Bit constant                                                                                                    | 3 |
| XOD                     |                               |                                              |    |     |     |    |    |    |     |        |     | EXCLUSIVE OR ACCU2                                                                                                   | 1 |
| XOD                     | k32                           |                                              |    |     |     |    |    |    |     |        |     | EXCLUSIVE OR 32Bit constant                                                                                          | 3 |

## **Timer instructions**

| Time i | nstruction     | S        |    | Status word |     |    |    |    | ord | 1   |     | Starting or resetting a timer (addressed directly or via parameters).<br>The time value must be in ACCU1-L. |     |
|--------|----------------|----------|----|-------------|-----|----|----|----|-----|-----|-----|-------------------------------------------------------------------------------------------------------------|-----|
| SP     | Τf             | 0 to 127 | BR | CC1         | CC0 | ov | os | OR | STA | RLO | /FC | Start time as pulse on edge change from "0" to "1".                                                         | 1/2 |
|        | Timer<br>para. |          | -  | -           | -   | -  | -  | -  | -   | Y   | -   |                                                                                                             | 2   |
| SE     | Τf             | 0 to 127 | -  | -           | -   | -  | -  | 0  | -   | -   | 0   | Start timer as extended pulse on edge change from                                                           | 1/2 |
|        | Timer<br>para. |          |    |             |     |    |    |    |     |     |     | "0" to "1".                                                                                                 | 2   |
| SD     | Τf             | 0 to 127 |    |             |     |    |    |    |     |     |     | Start timer as ON delay on edge change                                                                      | 1/2 |
|        | Timer<br>para. |          |    |             |     |    |    |    |     |     |     | from "0" to "1".                                                                                            | 2   |
| SS     | Τf             | 0 to 127 |    |             |     |    |    |    |     |     |     | Start timer as saving start delay on edge change                                                            | 1/2 |
|        | Timer<br>para. |          |    |             |     |    |    |    |     |     |     | from "0" to "1".                                                                                            | 2   |
| SA     | Τf             | 0 to 127 |    |             |     |    |    |    |     |     |     | Start timer as OFF delay on edge change from                                                                | 1/2 |
|        | Timer<br>para. |          |    |             |     |    |    |    |     |     |     | "1" to "0".                                                                                                 | 2   |
| FR     | Τf             | 0 to 127 |    |             |     |    |    |    |     |     |     | Enable timer for restarting on edge change from "0" to "1"                                                  | 1/2 |
|        | Timer<br>para. |          |    |             |     |    |    |    |     |     |     | (reset edge bit memory for starting timer).                                                                 | 2   |
| R      | Τf             | 0 to 127 |    |             |     |    |    |    |     |     |     | Reset timer.                                                                                                | 1/2 |

| Command | Operand        | Parameter | BR CC1 | Sta | atus<br>v o | S WO | rd<br>≀ s⊺ | TA RLO | /FC | Function                                             | Length<br>in<br>words |
|---------|----------------|-----------|--------|-----|-------------|------|------------|--------|-----|------------------------------------------------------|-----------------------|
|         |                |           |        |     |             |      |            |        |     | : Instruction depends on<br>: Instruction influences |                       |
|         | Timer<br>para. |           |        |     |             |      |            |        |     |                                                      | 2                     |

| Command | Operand | Parameter |    |     | s   | tati | us | wo | rd  |     |     | Function                 | Length<br>in |
|---------|---------|-----------|----|-----|-----|------|----|----|-----|-----|-----|--------------------------|--------------|
|         |         |           | BR | CC1 | CC0 | ٥V   | os | OF | ST/ | RLO | /FC |                          | words        |
|         |         |           |    |     |     |      |    |    |     |     |     | : Instruction depends on |              |
|         |         |           |    |     |     |      |    |    |     |     |     | : Instruction influences |              |

## **Counter instructions**

| Count | Counter instructions Status word |          |    |     |     |    | us | wo | ord |     |     | The counter value is in ACCU1-L res. in the address transferred as parameter. |     |
|-------|----------------------------------|----------|----|-----|-----|----|----|----|-----|-----|-----|-------------------------------------------------------------------------------|-----|
| S     | C f                              | 0 to 255 | BR | CC1 | CC0 | ov | os | OR | STA | RLO | /FC | Presetting of counter on edge change from "0" to "1".                         | 1/2 |
|       | Counter p.                       |          | -  | -   | -   | -  | -  | -  | -   | Υ   | -   |                                                                               | 2   |
| R     | Cf                               | 0 to 255 | -  | -   | -   | -  | -  | 0  | -   | -   | 0   | Reset counter to "0".                                                         | 1/2 |
|       | Counter p.                       |          |    |     |     |    |    |    |     |     |     |                                                                               | 2   |
| CU    | Cf                               | 0 to 255 |    |     |     |    |    |    |     |     |     | Increment counter by 1 on edge change from "0" to "1".                        | 1/2 |
|       | Counter p.                       |          |    |     |     |    |    |    |     |     |     |                                                                               | 2   |
| CD    | Cf                               | 0 to 255 |    |     |     |    |    |    |     |     |     | Decrement counter by 1 on edge change from "0" to "1".                        | 1/2 |
|       | Counter p.                       |          |    |     |     |    |    |    |     |     |     |                                                                               | 2   |
| FR    | Cf                               | 0 to 255 |    |     |     |    |    |    |     |     |     | Enable counter on edge change from "0" to "1".                                | 1/2 |
|       | Counter p.                       |          |    |     |     |    |    |    |     |     |     | (reset the edge bit memory for up and down counting)                          | 2   |
|       |                                  |          |    |     |     |    |    |    |     |     |     |                                                                               |     |

## **ADAM specific diagnostic entries**

**Entries in the diagnostic buffer** You may read the diagnostic buffer of the CPU via the STEP<sup>®</sup>7 Manager from Siemens. Besides of the standard entries in the diagnostic buffer, the ADAM CPUs support some additional specific entries in form of event-IDs.

**Monitoring the diagnostic entries i** To monitor the diagnostic entries you choose the option **PLC** > *Module Information* in the STEP<sup>®</sup>7 Manager. Via the register "Diagnostic Buffer" you reach the diagnostic window:

| us: Ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCESSIDIE NODES \P<br>( | 4PI = 2 (directly | J               | Uperating mode o    | r the CPU: | V STUP                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|-----------------|---------------------|------------|-----------------------|--|--|--|--|
| Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne System               | Performan         | ice Data        | Commur              | nication   | Stacks                |  |  |  |  |
| Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eneral                  | Diagnostic Bu     | uffer           | Memory              |            | Scan Cycle Time       |  |  |  |  |
| vents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | E E               | jilter settings | active              |            |                       |  |  |  |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time of day             | Date              | Event           |                     |            |                       |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04:05:39:060 pm         | 01/08/03          | STOP car        | used by I/O manag   | ement      |                       |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04:05:39:000 pm         | 01/08/03          | Event ID:       | 16# E004 🧲          | -          |                       |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04:05:35:080 pm         | 01/08/03          | Mode tran       | sition from STOP to | AD/        |                       |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04:05:35:080 pm         | 01/08/03          | Request f       | or automatic warm   | ADF        | 1VI-ID                |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04:05:35:000 pm         | 01/08/03          | Event ID:       | 16# E004 🧲          | -          |                       |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04:05:28:000 pm         | 01/08/03          | Power on        | backed up           |            |                       |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04:05:22:000 pm         | 01/08/03          | Power fail      | ure                 |            |                       |  |  |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04:03:31:060 pm         | 01/08/03          | STOP ca         | used by 1/0 manag   | ement      | •                     |  |  |  |  |
| )etails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on Event: 19 d          | of 24             |                 |                     | Event ID:  | 16# 4302              |  |  |  |  |
| Details on Event.       13 bit 24       Event ib.       164 4302         Mode transition from STARTUP to RUN       Image: Startup information:       Image: Startup information:       Image: Startup information:         - Time for time stamp at the last non backed up power on       - Single processor operation       Image: Startup information:         - Single processor operation       Current/last startup type:       - Warm restart triggered by switch setting; last power on backed up |                         |                   |                 |                     |            |                       |  |  |  |  |
| Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ve <u>A</u> s           | <u>S</u> ettings  | Оре             | n <u>B</u> lock     |            | Help <u>o</u> n Event |  |  |  |  |

The diagnosis is independent from the operating mode of the CPU. You may store a max. of 100 diagnostic entries in the CPU.

The following page shows an overview of the ADAM specific Event-IDs.

| Overview of the | Event-ID | Description                                                                                   |
|-----------------|----------|-----------------------------------------------------------------------------------------------|
| Event-IDs       | 0xE000   | reserved                                                                                      |
|                 | 0xE001   | reserved                                                                                      |
|                 | 0xE002   | reserved                                                                                      |
|                 | 0xE003   | Error at parameterization/ configuration ADAM-BUS                                             |
|                 | 0xE004   | Multi-parameterization of a peripheral address                                                |
|                 | 0xE005   | Error at address information parsing                                                          |
|                 | 0xE006   | Error at DP slave information parsing                                                         |
|                 | 0xE007   | Configured in-/output bytes do not fit in the peripheral area (DP-Slave / High-speed counter) |
|                 | 0xE008   | Error at High-speed counter information parsing                                               |
|                 | 0xE009   | reserved                                                                                      |
|                 | 0xE010   | Not defined module detected at backplane bus                                                  |
|                 |          |                                                                                               |
|                 | 0xE0CC   | Communication error MPI / Serial                                                              |
|                 |          |                                                                                               |
|                 | 0xE100   | MMC access error                                                                              |
|                 | 0xE101   | MMC file system error                                                                         |
|                 | 0xE102   | MMC FAT error                                                                                 |
|                 |          |                                                                                               |
|                 | 0xE200   | MMC writing ready (Copy Ram2Rom)                                                              |
|                 |          |                                                                                               |
|                 | 0xE300   | Internal Flash writing ready (Copy Ram2Rom)                                                   |